Set up the problem with the conversion rates as fractions where when you multiply the units cancel out leaving the desired units behind.
How many joules of energy are required to run a 100 W light bulb for one day?
<span><span><span>A</span><span>100 </span>joules</span><span><span>B</span>100<span>W </span><span>× </span>24<span>hr </span>joules</span><span><span>C</span>100<span>W </span><span>× </span>24<span>hr </span><span>× </span>60<span>min∕hr </span>joules</span><span><span>D</span>100<span>W </span><span>× </span>24<span>hr </span><span>× </span>60<span>min∕hr </span><span>× </span>60<span>s∕min </span>joules</span></span>
Answer:
A
Explanation:
The officer would have had permission regardless of anything else, kind of like letting someone into your house.
If the temperature is high there is less water because it evaporates if it is cloudy it is more because it doesn't evaporate
The gravitational potential energy will increase by 423.36 J
<h3>How to determine the potential energy at ground level</h3>
- Mass (m) = 72 kg
- Acceleration due to gravity (g) = 9.8 m/s²
- Height (h) = 0 m
- Potential energy at ground level (PE₁) =?
PE = mgh
PE₁ = 72 × 9.8 × 0
PE₁ = 0 J
<h3>How to determine the potential energy at 60 cm (0.6 m)</h3>
- Mass (m) = 72 kg
- Acceleration due to gravity (g) = 9.8 m/s²
- Height (h) = 0.6 m
- Potential energy at 60 cm (0.6 m) (PE₂) =?
PE = mgh
PE₂ = 72 × 9.8 × 0.6
PE₂= 423.36 J
<h3>How to determine the change in potential energy </h3>
- Potential energy at ground level (PE₁) = 0 J
- Potential energy at 60 cm (0.6 m) (PE₂) = 423.36 J
- Change in potential energy =?
Change in potential energy = PE₂ - PE₁
Change in potential energy = 423.36 - 0
Change in potential energy = 423.36 J
Learn more about energy:
brainly.com/question/10703928
#SPJ1