The height at time t is given by
h(t) = -4.91t² + 34.3t + 1
When the ball reaches maximum height, its derivative, h'(t) = 0.
That is,
-2(4.91)t+34.3 = 0
-9.82t + 34.3 = 0
t = 3.4929 s
Note that h''(t) = -9.82 (negative) which confirms that h will be maximum.
The maximum height is
hmax = -4.91(3.4929)² + 34.3(3.4929) + 1
= 60.903 m
Answer:
The ball attains maximum height in 3.5 s (nearest tenth).
The ball attains a maximum height of 60.9 m (nearest tenth)
She is traveling at a constant speed.
I think the answer to this problem I believe would probably be B. learned optimism. I think it's the closest answer...I THINK
Answer:
gravitational force and outward pressure
Explanation:
The stars are very massive stellar objects, so they have a strong gravitational force, which drives the star to contract itself, but also in stars there are nuclear reactions such as fusion of hydrogen and other elements, that releases energy and creates a pressure from the center to the star exterior, an outward pressure that goes against the gravitational force. So when a star is stable these two forces exist in equilibrium or in balance, in which the star does not collapse by gravity or disintegrate by its outward pressure.
Answer:
Baka makita mo si behati dun