A roller coaster car starts from the rest from a first summit, descends a vertical distance of 45 meters and then climbs a second summit, reaching the top with a speed of 15m / s. How high is the second summit? Do not consider friction
Answer: Things continue doing what they are doing unless a force is applied to it. Objects have a natural tendency to resist change. This is INERTIA. Heavier objects (objects with more mass) are more difficult to move and stop. Heavier objects (greater mass) resist change more than lighter objects, so true
Explanation:
Pushing a bicycle or a Cadillac, or stopping them once moving. The more massive the object (more inertia) the harder it is to start or stop. The Cadillac has more of a tendency to stay stationary (or continue moving), and resist a change in motion than a bicycle.
Answer:
F = 3.20 N
Explanation:
Given:
Work done by child = 80.2 j
Distance that the car moves = 25.0 m
We need to find the force acting on the car.
Solution:
Using work done formula as.

Where:
W = Work done by any object.
F = Force (push or pull)
d = distance that the object moves.
Substitute
in work done formula.


F = 3.20 N
Therefore, force acting on the car F = 3.20 N
Answer:increases
Explanation:
If we are going upward in an elevator from the ground floor to the top floor then it indicates that your distance from the center of the earth is increasing while the time period remains the same.
If the radial distance is increased then the tangential velocity of the object must be increased because the time period is the same.
This can be best explained by taking an example of a car moving in a circle of radius r. If radial is increased for the same period then the car has to travel at a higher velocity to make in time.