Answer: Hello there!
this type of equations in one dimension (when all the factors are constants) are written as:
h = initial position + initial velocity*t + (acceleration/2)*t^2
First, let's describe the hunter's equation:
We know that Graham moves with a velocity of 1.5 ft/s, and when he is 18 ft above the ground, Hunter throws the ball, and because Graham is pulled with a cable, he is not affected by gravity.
If we define t= 0 when Graham is 18 ft above the ground, the equation for Graham height (in feet) is:
h = 18 + 1.5t
where t in seconds.
Now, the equation for the ball:
We know that at t= 0, the ball is thrown from an initial distance of 5ft, with an initial velocity of 24ft/s and is affected by gravity acceleration g, where g is equal to: 32.2 ft/s (notice that the gravity pulls the ball downwards, so it will have a negative sign)
the equation for the ball is:
h = 5 + 24t - (32.2/2)t^2 = 5 + 24t - 16.1t^2
So the system is:
h = 18 + 1.5t
h = 5 +24t - 16.1t^2
so the right answer is A
The Law of Cosines features the 3 side lengths of a triangle, plus the measure of the angle opposite one of those sides.
We want angle x, which is opposite the side of length 39.
Then: a^2 = b^2 - 2ab cos C becomes 39^2 = 36^2 + 59^2 - 2(36)(59)cos x
or 1521 = 3481 + 1296 - 2(36)(59) cos x
Subtract (3481+1296) from both sides: 1521 - 4777 = -4248cos x
-3256 = -4248cos x
-3256
Then: cosx = --------------- = 0.766
-4248
Solving for x: x = arccos -0.766 = 0.698 radian, or 40 degrees (answer)
Your area is 37, hope this helps.
What is it that I am supposed to be doing?