The correct answer is<span> B.The speed of sound in air is directly proportional to the temperature of the air.
When the temperature increases so does the speed of sound. Sound is faster by </span>0.60 m/s for every higher degree in air temperature because the air density is reduced and the sound can travel faster.
For fundamental frequency of a string to occur, the length of the string has to be half the wavelength. That is,
1/2y = L, where L = length of the string, y = wavelength.
Therefore,
y = 2L = 2*0.75 =1.5 m
Additionally,
y = v/f Where v = wave speed, and f = ferquncy
Then,
v = y*f = 1.5*220 = 330 m/s
A beat is an interference pattern between two sounds of slightly different frequencies, perceived as a periodic variation in volume whose rate is the difference of the two frequencies. Frequency beat is equal to,

The reference frequency in our case would be 392Hz, and since there is the possibility of the upper and lower range for the amount of beats per second that the two possible frequencies are heard would be


Therefore the two possible frequencies the piano wire is vibrating at, would be 396Hz and 388Hz
The forces (what causes the ball to accelerate) are gravity, friction, and the normal force. In this case, gravity is a downward force caused by the gigantic mass of the Earth and the mass of the ball. Keep in mind that a force is acceleration. Acceleration is a change in velocity. The ball speeds up. Than it stops speeding up at a certain point where the frictional force (along with air friction) equals the parallel component of gravity.
Newton's Second Law States- The greater mass of an object, the more force it will take to accelerate the object.