Answer:
a. Final velocity, V = 2.179 m/s.
b. Final velocity, V = 7.071 m/s.
Explanation:
<u>Given the following data;</u>
Acceleration = 0.500m/s²
a. To find the velocity of the boat after it has traveled 4.75 m
Since it started from rest, initial velocity is equal to 0m/s.
Now, we would use the third equation of motion to find the final velocity.
Where;
- V represents the final velocity measured in meter per seconds.
- U represents the initial velocity measured in meter per seconds.
- a represents acceleration measured in meters per seconds square.
- S represents the displacement measured in meters.
Substituting into the equation, we have;


Taking the square root, we have;

<em>Final velocity, V = 2.179 m/s.</em>
b. To find the velocity if the boat has traveled 50 m.


Taking the square root, we have;

<em>Final velocity, V = 7.071 m/s.</em>
Answer:
Electrical energy is answer
Explanation:
hope it helps
Mark me as brainliest plz.
Answer:
2.12/R mW
Explanation:
The electrical power, P generated by the rod is
P = B²L²v²/R where B = magnetic field = 0.575 T, L = length of metal rod = separation of metal rails = 20 cm = 0.2 m, v = velocity of metal rod = 40 cm/s = 0.4 m/s and R = resistance of rod = ?
So, the induced emf on the conductor is
E = BLv
= 0.575 T × 0.2 m × 0.4 m/s
= 0.046 V
= 46 mV
The electrical power, P generated by the rod is
P = B²L²v²/R
= B²L²v²/R
So, P = (0.575 T)² × (0.2 m)² × (0.4 m/s)²
= 0.002116/R W
= 2.12/R mW