The question above can be solved by using this equation:
CAVA =CBVB
Where:
CA =Concentration of acid = 1.0 M
VA = Volume of acid = ?
CB = Concentration of base = 1.0 M
VB = Volume of base = 25 ml
VA = CBVB / CA
VA = [1 * 25] / 1 = 25 / 1 = 25
VA = 25 ml
Therefore, the volume of acid that is required to completely neutralize the base is 25 ml.<span />
Carbon monoxide (CO) is a colorless, odorless, and tasteless gas that is slightly less dense than air. ... Carbon monoxide consists of one carbon atom and one oxygen atom, connected by a triple bond that consists of two covalent bonds as well as one dative covalent bond.
I think it's probably not right.
Dichloromethane/ethanol solvent mixtures are substances composed of compounds that has a very high volatility. The higher the volatility of the substances, the faster it is for them to vaporized.
If we leave the solution or the mixture uncovered then, it is easier for the vapors produced to escape the system to the atmosphere.
Answer:
Ammonia is an Arrhenius base and a Brønsted-Lowry base.
Explanation:
An Arrhenius base is any substance which, when it is dissolved in an aqueous solution, produces hydroxide (OH^-), ions in solution. An aqueous solution is a solution that has water present in it.
A Bronsted-Lowry base is a substance that accepts a proton, that is, a hydrogen ion (H^+).
Looking at the equation above, ammonia satisfies both characteristics. We can see that when ammonia is dissolved in water, hydroxide ions is produced in the solution. Hence it is an Arrhenius base. Similarly, the hydroxide ion is formed when ammonia accepts a proton. This is a characteristic of a Brownstead-Lowry base. Hence ammonia is both an Arrhenius base and a Brownstead-Lowry base.
Answer:
False
Explanation:
It is the opposite. A good way to remember is the that the dependent variable depends on the independent variable.