Linear programming which shows the best investment strategy for the client is Max Z=0.12I +0.09B and subject to constraints are :I+ B<=25000,
0.005 I +0.004B<=250.
Given maximum investment client can make is $55000, annual return= 9%, The investment advisor requires that at most $25,000 of the client's funds should be invested in the internet fund. The internet fund, which is the more risky of the two investment alternatives, has a risk rating of 5 per thousand dollars invested. the blue chip fund has a risk rating of 4 per thousand dollars invested.
We have to make a linear programming problem.
Let
I= Internet fund investment in thousands.
B=Blue chip fund investment in thousands.
Objective function:
Max Z=0.12I+0.09B
subject to following constraints:
Investment amount: I+ B<=25000
Risk Rating: 5/100* I+4/100*B<=250 or 0.005 I +0.004B<=250
I,B>=0.
Hence the objective function is Max Z=0.12 I+ 0.09 B.
Learn more about LPP at brainly.com/question/25828237
#SPJ4
Answer:
A. The #1 Seed
Step-by-step explanation
To find the answer you find the rate of one apple tree to # of apples. you do this by dividing the # of apples from the orchard by the apple trees and whichever has the highest rate of Apples to Trees is the answer which would be The #1 Seed.
The linear equation that is perpendicular to the line x+3y=21 is:
y = 3*x - 6
<h3>How to find the equation of the line?</h3>
A general line in the slope-intercept form is written as:
y = m*x + b
Where m is the slope and b is the y-intercept.
Two linear equations are perpendicular if the product between the two slopes is equal to -1.
Rewriting the given line we can get:
x +3y = 21
3y = 21 - x
y = 21/3 - x/3
y = (-1/3)*x + 21/3
Then the slope is (-1/3), if our line is perpendicular to this one, then:
m*(-1/3) = -1
m = 3
our line is:
y = 3*x + b
To find the value of b, we use the fact that our line passes through (1, - 3)
-3 = 3*1 + b
-3 - 3 = b
-6 = b
The line is y = 3*x - 6
Learn more about linear equations:
brainly.com/question/1884491
#SPJ1
Answer:

Step-by-step explanation:
see the attached figure with letters to better understand the problem
Let
a ----> the height of rectangle in mm
b ---> the base of rectangle in mm
step 1
Find the base of rectangle
----> by segment addition postulate
substitute

step 2
Find the height of rectangle
---> by segment addition postulate
substitute the given values

Find the length sides CG
Applying the Pythagorean Theorem

substitute the given values



simplify

therefore

step 3
Find the area of rectangle

we have


substitute
