The period of the orbit would increase as well
Explanation:
We can answer this question by applying Kepler's third law, which states that:
"The square of the orbital period of a planet around the Sun is proportional to the cube of the semi-major axis of its orbit"
Mathematically,

Where
T is the orbital period
a is the semi-major axis of the orbit
In this problem, the question asks what happens if the distance of the Earth from the Sun increases. Increasing this distance means increasing the semi-major axis of the orbit,
: but as we saw from the previous equation, the orbital period of the Earth is proportional to
, therefore as
increases, T increases as well.
Therefore, the period of the orbit would increase.
Learn more about Kepler's third law:
brainly.com/question/11168300
#LearnwithBrainly
Answer:
The water level in the bath tub is rising at a rate of 0.0111 ft/s
Explanation:
Volume of the bath tub = (Area of base) × (height)
Area of base = 18 ft² (constant)
Height = h (variable)
V = 18h
(dV/dt) = 18 (dh/dt)
If (dV/dt) = 0.2 ft³/s
0.2 = 18 (dh/dt)
(dh/dt) = (0.2/18)
(dh/dt) = 0.0111 ft/s
Hope this Helps!!!
Answer:
Target ceiling. the upper limit of your physical activity. Target fitness zone. Above the threshold of training and below the target ceiling.
Hope this helps. Can u give me brainliest
Explanation:
<h3>
Answer:</h3>
35 meters
<h3>
Explanation:</h3>
<u>Data given;</u>
- Velocity of an object = 5 m/s
- Time taken = 7 s
We are required to calculate how far the object traveled.
Velocity = Displacement ÷ time
Displacement = Velocity × time
= 5 m/s × 7 s
= 35 m
Therefore; the object traveled 35 meters