Answer:
Explanation:
Heat capacity A = 3 x heat capacity of B
initial temperature of A = 2 x initial temperature of B
TA = 2 TB
Let T be the final temperature of the system
Heat lost by A is equal to the heat gained by B
mass of A x specific heat of A x (TA - T) = mass of B x specific heat of B x ( T - TB)
heat capacity of A x ( TA - T) = heat capacity of B x ( T - TB)
3 x heat capacity of B x ( TA - T) = heat capacity of B x ( T - TB)
3 TA - 3 T = T - TB
6 TB + TB = 4 T
T = 1.75 TB
Answer:
Average speed is 60 km/hr whereas average velocity is 0 km/ hr.
Explanation:
The average speed of the boat is 60 km/ hr while on the other hand, the average velocity of the boat is 0 km/ hr because average speed is the total distance covered by the boat in total time and average velocity is the displacement covered by the boat in total time. The total distance covered by the boat is 60 km and the total time is 60 minutes which is equals to one hour so the answer is 60 km/hr whereas the displacement is the shortest distance between initial and final position which is 0 in this case so 0 divided by 60 minutes or one hour is also 0.
Answer:
The total frictional force is 358.0 newtons
Explanation:
Power is the amount of average work (W) an object does on a period of time (Δt):

Remember average work is average force (F) times displacement (Δs):

but displacement over time is average speed
, then:
(1)
That is, the power of the car is the force the engine does times the speed of the car. As the question states, if the car is at constant velocity then the power developed is used to overcome the frictional forces exerted by the air and the road, that is by Newton's first law, the force the motor of the car does is equal the force of frictional forces. So, to find the frictional forces we only have to solve (1) for F:

Knowing that 1hp is 746W then 30hp=22380W and 1 mile = 1609m then 140 mph = 225308
=
, then:

Answer:
When the ejected air is moving in the downward direction then the thrust force acts in the upward direction, due to reversal thrust, the jets can take off vertically without needing a runway this way.
Explanation:
Newton’s third law motion states that for every action there will be an equal and opposite reaction.
Thrust reversal is also known as reverse thrust. It acts opposite to the motion of the aircraft by providing the deceleration.
Commercial aircraft moves the ejected air in the forward direction means that the thrust will acts opposite to the motion of the aircraft that is backward direction due to thrust reversal. This thrust force might be used to decelerate the craft.
Uses of thrust reversal in practice:
When the ejected air is moving forward direction then the thrust force moving backward direction due to reversal thrust the speed of the craft slows down.
When the ejected air is moving in the downward direction then the thrust force acts in the upward direction, due to reversal thrust, the jets can take off vertically without needing a runway this way.
the number of neutrons may b 21