The electric potential V(z) on the z-axis is : V = 
The magnitude of the electric field on the z axis is : E = kб 2
( 1 - [z / √(z² + a² ) ] )
<u>Given data :</u>
V(z) =2kQ / a²(v(a² + z²) ) -z
<h3>Determine the electric potential V(z) on the z axis and magnitude of the electric field</h3>
Considering a disk with radius R
Charge = dq
Also the distance from the edge to the point on the z-axis = √ [R² + z²].
The surface charge density of the disk ( б ) = dq / dA
Small element charge dq = б( 2πR ) dr
dV
----- ( 1 )
Integrating equation ( 1 ) over for full radius of a
∫dv = 
V = ![\pi k\alpha [ (a^2+z^2)^\frac{1}{2} -z ]](https://tex.z-dn.net/?f=%5Cpi%20k%5Calpha%20%5B%20%28a%5E2%2Bz%5E2%29%5E%5Cfrac%7B1%7D%7B2%7D%20-z%20%5D)
= ![\pi k (\frac{Q}{\pi \alpha ^2})[(a^2 +z^2)^{\frac{1}{2} } -z ]](https://tex.z-dn.net/?f=%5Cpi%20k%20%28%5Cfrac%7BQ%7D%7B%5Cpi%20%5Calpha%20%5E2%7D%29%5B%28a%5E2%20%2Bz%5E2%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20%20-z%20%5D)
Therefore the electric potential V(z) = 
Also
The magnitude of the electric field on the z axis is : E = kб 2
( 1 - [z / √(z² + a² ) ] )
Hence we can conclude that the answers to your question are as listed above.
Learn more about electric potential : brainly.com/question/25923373
In order to determine the acceleration of the block, use the following formula:

Moreover, remind that for an object attached to a spring the magnitude of the force acting over a mass is given by:

Then, you have:

by solving for a, you obtain:

In this case, you have:
k: spring constant = 100N/m
m: mass of the block = 200g = 0.2kg
x: distance related to the equilibrium position = 14cm - 12cm = 2cm = 0.02m
Replace the previous values of the parameters into the expression for a:

Hence, the acceleration of the block is 10 m/s^2
<span>Wave energy is an idea that Robert Hutchings Goddard introduced in his “Further Developments” to his research "A Method of Reaching Extreme Altitudes" </span>
<h2>
Answer:</h2>
<u>Friction:</u>
When an object slips on a surface, an opposing force acts between the tangent planes which acts in the opposite direction of motion. This opposing force is called Friction. Or in other words, Friction is the opposing force that opposes the motion between two surfaces.
The main component of friction are:
<u>Normal Reaction (R):
</u>
Suppose a block is placed on a table in the above picture, which is in resting state, then two forces are acting on it at that time.
The first is due to its weight mg which is working from its center of gravity towards the vertical bottom.
The second one is superimposed vertically upwards by the table on the block, called the reaction force (P). This force passes through the center of gravity of the block.
Due to P = mg, the box is in equilibrium position on the table.
<u>Coefficient of friction ( </u>μ )<u>:
</u>
The ratio of the force of friction and the reaction force is called the coefficient of friction.
Coefficient of friction, µ = force of friction / reaction force
μ = F / R
The coefficient of friction is volume less and dimensionless.
Its value is between 0 to 1.
<u>Advantage and disadvantage from friction force:
</u>
- The advantage of the force of friction is that due to friction, we can walk on the earth without slipping.
- Brakes in all vehicles are due to the force of friction.
- We can write on the board only because of the force of friction.
- The disadvantage of this force is that due to friction, some parts of energy are lost in the machines and there is wear and tear on the machines.
<u>How to reduce friction:
</u>
- Using lubricants (oil or grease) in machines.
- Friction can be reduced by using ball bearings etc.
- Using a soap solution and powder.