1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masteriza [31]
3 years ago
11

A tank has a gate that automatically opens if the water levelhis high enough. The gate has a squarecross section of side1m and c

an rotate about an axis going through the point O. Calculate the minimumwater level that would trigger the opening of the floodgate.

Physics
1 answer:
umka2103 [35]3 years ago
3 0

Answer:

The gate will open if the height of water is equal to or more than 0.337m.

Explanation:

From the diagram attached, (as seen from the reference question found on google)

The forces are given as

Force on OA

F_1=P A_1\\F_1=\rho g \bar{h} A_{OA}

Here

  • ρ  is the density of water.
  • g is the gravitational acceleration constant
  • \bar{h} is the equivalent height given as

         \bar{h}=h+\frac{0.6}{2}\\\bar{h}=h+0.3

  • A_{OA} is the area of the OA part of the door which is calculated as follows:

       A_{OA}=L\times W\\A_{OA}=1\times 0.6\\A_{OA}=0.6 m^2

The  Force is given as

F_1=0.6\rho g[h+0.3]

Force on OB

F_2=P A_2\\F_2=\rho g \bar{h} A_{OB}

Here

  • ρ  is the density of water.
  • g is the gravitational acceleration constant
  • \bar{h} is the equivalent height given as

         \bar{h}=h+0.6+\frac{0.4}{2}\\\bar{h}=h+0.8

  • A_{OA} is the area of the OB part of the door which is calculated as follows:

       A_{OB}=L\times W\\A_{OB}=1\times 0.4\\A_{OB}=0.4 m^2

The  Force is given as

F_2=0.4\rho g[h+0.8]

Now the moment arms are given as

\bar{y}_a=\bar{h}+\frac{I}{A\bar{h}}\\\bar{y}_a=h+0.3+\frac{\frac{1}{12}\times 0.6^3 \times 1}{0.6 \times[h+0.3]}\\\bar{y}_a=h+0.3+\frac{0.03}{h+0.3}

\bar{y}_b=\bar{h}+\frac{I}{A\bar{h}}\\\bar{y}_b=h+0.8+\frac{\frac{1}{12}\times 0.4^3 \times 1}{0.4 \times[h+0.8]}\\\bar{y}_b=h+0.8+\frac{0.0133}{h+0.8}

Taking moment about the point O as zero

F_1(h+0.6-\bar{y}_a)=F_2(\bar{y}_b-h+0.6)\\F_1(h+0.6-h-0.3-\frac{0.03}{h+0.3})=F_2(h+0.8+\frac{0.0133}{h+0.8}-h-0.6)\\F_1(0.3-\frac{0.03}{h+0.3})=F_2(0.2+\frac{0.0133}{h+0.8})\\0.6\rho g[h+0.3](0.3-\frac{0.03}{h+0.3})=0.4\rho g[h+0.8](0.2+\frac{0.0133}{h+0.8})\\0.6[h+0.3](0.3-\frac{0.03}{h+0.3})=0.4[h+0.8](0.2+\frac{0.0133}{h+0.8})\\0.18h -0.054-0.018=0.08h+0.064+0.00533\\h=0.337 m

So the gate will open if the height of water is equal to or more than 0.337m.

You might be interested in
What must happen to an atom of magnesium in order to become a magnesium ion Mg+2?
igomit [66]

Answer:

Answer is: c. It must lose two electrons and become an ion.

Magnesium (Mg) is metal from 2. group of Periodic table of elements and has low ionisation energy and electronegativity, which means it easily lose valence electons (two valence electrons).

Magnesium has atomic number 12, which means it has 12 protons and 12 electrons. It lost two electrons to form magnesium cation (Mg²⁺) with stable electron configuration like closest noble gas neon (Ne) with 10 electrons.

Electron configuration of magnesium ion: ₁₂Mg²⁺ 1s² 2s² 2p⁶.

Explanation:

4 0
3 years ago
Read 2 more answers
An object that is falling has the following type(s) of energy. Ignore air resistance.
Anton [14]
Potential and kinetic
6 0
3 years ago
Read 2 more answers
When a space shuttle takes off, the chemical reactions of the fuel give the shuttle the kinetic energy to leave Earth's atmosphe
inessss [21]

Answer:a

Explanation:

Because its has to use tihs potential energy to overcome the atmosphere so the shuttle will not go back down

6 0
3 years ago
When a magnetic field is first turned on, the flux through a 20-turn loop varies with time according to Φm=5.0t2−2.0t, where Φm
goldfiish [28.3K]

Answer:

A) ( - 200t + 40 ) volts

B)  b) anticlockwise ,  c) anticlockwise , d) clockwise ,  e) clockwise

Explanation:

Given data:

magnetic flux (Φm) = 5.0t^2 − 2.0t

number of turns = 20

<u>a) determine induced emf </u>

E = - N \frac{d\beta }{dt}

  =  - N ( 10t - 2 ) = - 20 ( 10t - 2 )

  =  - 200t + 40  volts

<u>b) Determine direction of induced current </u>

i) at t = 0

 E = - 0 + 40  ( anticlockwise direction )

ii) at t = 0.10

E = -20 + 40 =  20 ( anticlockwise direction )

iii) at t = 1

E = - 200 + 40 = - 160 ( clockwise direction)

iv) at t = 2

E = -400 + 40 =  - 360 ( clockwise direction )

8 0
3 years ago
What is jupiters orbital period
padilas [110]
11.86 years.  Usually memorized as "12 years".
8 0
3 years ago
Other questions:
  • A driver traveled 270 km in 3 hours. The driver’s destination was still 150 km away. What was the driver’s average speed at this
    13·1 answer
  • A guy wire helping to stabilize a transmitting tower 500 m high makes in angle of 50° with the ground. In a strong wind, the tow
    7·1 answer
  • If I hit myself, and it hurts, does that make me weak or strong?<br><br> A. Yes<br> B. No
    12·2 answers
  • A piece of metal has a mass of 10g and a mass of 2cm
    12·1 answer
  • An object is placed in front of a convex lens of a length 10cm. What is the nature of the image formed if the object distance is
    6·1 answer
  • Determine the kinetic energy of a 1000-kg roller coaster car that is moving with a speed of 20.0 m/s
    9·1 answer
  • It appears as though the moon disappears and the sun comes out in the daytime. Based on what you know, explain why this is happe
    11·2 answers
  • Two boys are at the top of a waterslide at Seven Peaks Water Park. One boy (boy A) slips off the top of the tower and falls unob
    7·1 answer
  • Write on the discovery of electricity not less than a page​
    7·1 answer
  • how do you Compute the approximate acceleration of gravity for an object above the earth's surface, assigning accel gravity with
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!