Answer:
An increase in air temperature because of its compression.
Explanation:
The Gay-Lussac's Law states that a gas pressure is directly proportional to its temperature in an enclosed system to constant volume.
<em>where P: is the gas pressure, T: is the gas temperature and k: is a constant.</em>
Therefore, due to Gay-Lussac's Law, when the plunger is pushed down very rapidly, the pressure of the air increase, which leads to its temperature increase. That is why cotton flashes and burns.
I hope it helps you!
Answer:
newton - motion, gravity
kepler - orbital paths
brahe - the sun goes around the earth
Explanation:
im not sure about brahe but its the only one that makes sense
Answer:
Flow rate 2.34 m3/s
Diameter 0.754 m
Explanation:
Assuming steady flow, the volume flow rate along the pipe will always be constant, and equals to the product of flow speed and cross-section area.
The area at the well head is

So the volume flow rate along the pipe is

We can use the similar logic to find the cross-section area at the refinery

The radius of the pipe at the refinery is:



So the diameter is twice the radius = 0.38*2 = 0.754m
Even tho one is stronger then the other... they are both alike because they are still nuclear forces.
The answer is A. Further apart and move faster.
Conduction in general is the transfer of energy from molecule to molecule through DIRECT CONTACT. In solids and liquids, the molecules are closer to each other; more so in solids than liquids. This enables them to pass energy more quickly. Gas molecules on the other hand are further apart and move faster because they have space to move more freely. Energy does not easily pass on to the next molecule because of the distance between the molecules.