Explanation:
When the points are plotted on a graph, it is easy to see that the slope of AC is -2 and the slope of BC is 1/2. These slope values have a product of -1, so the corresponding line segments are perpendicular to each other.
___
If you have studied vectors, you can find the dot product of AC with BC:
AC = (-5, 3) -(-2, -3) = (-3, 6)
BC = (6, 1) -(-2, -3) = (8, 4)
The dot product is ...
(-3, 6)·(8, 4) = (-3)(8) + (6)(4) = -24+24 = 0
When the dot product of vectors is zero, they are perpendicular.
Answer:
No, it is NOT a function.
Step-by-step explanation:
A functions' inputs are assigned to exactly one output.
We are given the points:
{(8,2) (4,-3) (6,4) (8,1)}
The input of 8 is repeating.
The given relation is not a function.
Hope this helps!
<span>1. 5564÷91
I know that 9 * 6 = 56
5564 rounds to 5600
91 rounds to 9
Since 56/9 = 6, then 5600/90 is the same as 560/9 = 60
The estimate is 60
2. </span><span>5391÷25
5391 sounds to 5400
25 is 1/4 of 100.
That means when you divide by 25, you can divide by 100 and multiply by 4.
5400/100 = 54
54 * 4 = 216
Estimate: 216
3. </span><span>explain how to estimate 498÷12
48/12 = 4
498 is little more than 480, so 498/12 is little more than 40
4. </span><span>which is the closest estimate for 2130÷ 33
A.7 B.17 C.70 D.700
2130/33
Round off the numerator and denominator to
2100/30
Reduce the fraction
210/3
Since I know that 21/3 = 7, then 210/3 = 70
Estimate: 70
</span>
This is a units conversion problem: you have time and you want to convert that to money. Any units conversion problem involves multiplication by 1 in various forms. When you are given 7.5 min = 1 bottle = 500g, you know that (500 g)/(7.5 min) = 1 because the numerator and denominator are equal. (Of course, you are aware that 500 g = 0.500 kg.) The idea is to choose the forms of 1 that cause units you don't want to cancel, leaving only the units you do want.

The glass for recycling that would save enough energy to power an oven for 6 hours costs 120p.
Answer:
y = 2cos5x-9/5sin5x
Step-by-step explanation:
Given the solution to the differential equation y'' + 25y = 0 to be
y = c1 cos(5x) + c2 sin(5x). In order to find the solution to the differential equation given the boundary conditions y(0) = 1, y'(π) = 9, we need to first get the constant c1 and c2 and substitute the values back into the original solution.
According to the boundary condition y(0) = 2, it means when x = 0, y = 2
On substituting;
2 = c1cos(5(0)) + c2sin(5(0))
2 = c1cos0+c2sin0
2 = c1 + 0
c1 = 2
Substituting the other boundary condition y'(π) = 9, to do that we need to first get the first differential of y(x) i.e y'(x). Given
y(x) = c1cos5x + c2sin5x
y'(x) = -5c1sin5x + 5c2cos5x
If y'(π) = 9, this means when x = π, y'(x) = 9
On substituting;
9 = -5c1sin5π + 5c2cos5π
9 = -5c1(0) + 5c2(-1)
9 = 0-5c2
-5c2 = 9
c2 = -9/5
Substituting c1 = 2 and c2 = -9/5 into the solution to the general differential equation
y = c1 cos(5x) + c2 sin(5x) will give
y = 2cos5x-9/5sin5x
The final expression gives the required solution to the differential equation.