This is the diagram to the question above.
well, when we use the word "the function" we're referring to the dependent part, which depends on the independent, y,x wise, we're referring to the function "y" or f(x) if you wish.
so for an exponential function
is the function ever positive only? it can be
is it negative only? it can be
can it be both? sure thing, most of the time it's both
we can say a function f(x) is always positive when the independent values of "x" yield a positive value only, mind you that when we're talking about "the function" we're really referring to the resulting values in a set, so can the values of the output no matter what "x" we use be always positive? sure, can they also be negative only? sure, how about both? sure thing.
notice the template in the picture below, we can transform any exponential function like the one above 2ˣ with some vertical shift upwards, and is always positive, or -2ˣ with a vertical shift downwards and it's always negative, or we can stretch it about and have -2ˣ shifted upwards so sometimes is positive, and sometimes is negative.
above the x-axis is always positive, below is negative, but with transformations on the parent function it can be any of the three types.
46 seniors graduate with honors out of 356 seniors
Answer:
There are 43200 minutes in a 30-day month.
Step-by-step explanation:
We know that:
60 minutes = 1 hour
24 hours = 1 day
Thus to determine the minutes in a 30-day month, let us first determine the number of hours in the month.
30
x 24
_______
120
60
_______
720 hours
The 30-day month has a total of 720 hours.
So that the number of minutes that make up 720 hours can be determined by;
720
x 60
_______
000
4320
_______
43200
Therefore, there are 43200 minutes in a 30-day month.
The ? is 1.
7*(9*1)=63
Hope this helps!!