<em>θ</em> is given to be in the fourth quadrant (270° < <em>θ</em> < 360°) for which sin(<em>θ</em>) < 0 and cos(<em>θ</em>) > 0. This means
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1 ==> sin(<em>θ</em>) = -√[1 - cos²(<em>θ</em>)] = -3/5
Now recall the double angle identity for sine:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
==> sin(2<em>θ</em>) = 2 (-3/5) (4/5) = -24/25
Answer:
6a(2b+1)
is it this
if it's correct mark me brainliest pleasee
Answer:
x=-1 y=2
Step-by-step explanation:
Use Elimination or Substitution (Elimination shown below)
6x+5y=4
6x-7y =-20 <- Multiply by -1
-6x+7y=20
12y = 24
y=2
Plug back into either of the equations and solve for x.
6x + 10= 4
6x = -6
x = -1
Double check work:
-6+10 = 4