So, we have:
- molecular weight
- shape
- temperature
- kinetic energy
- mass
- density
Let's rule out the different options.
- molecular weight: Say you have a molecule of H2O. H2O can be a solid, liquid, or gas, but its molecular weight never changes throughout (It's still the same molecule, no matter what phase it is in). We can rule this out.
- shape: Let's pretend we have three identical closed containers, and we fill each one halfway with water, blocks of ice cubes, and water vapor. In the container with water, you will see that the water takes the shape of the container, but doesn't fill the entire container up. The ice cubes will stay ice cubes, assuming they don't melt, so they don't take the shape of the container. The vapor will fill up the entire container. Since all three are different, I would say yes, this could be a distinguishable feature.
- temperature: In general, I would say no, because every element/molecule has different boiling points and different vaporization points. So if you have a liquid at 5°C, you could also have a different element in solid form at 5°C. But if you're comparing a single type of molecule, it would have a boiling point and a vaporization point, so you <em>would</em> be able to tell between them.
- kinetic energy: Kinetic energy refers to how much movement there is in respect to each molecule. In solids, the molecules are packed tightly together and can't move very much, so they have lower kinetic energy. In liquids, they are less packed, but still restricted. And in gases, they can fly freely, so they will have much more kinetic energy than liquids or solids. This one's a yes.
- mass: No matter what form, there are still the same amount of molecules, and each molecule has the same mass as before. It won't change.
- density: Since the molecules are more spread out in gases, it will be less dense. Liquids will be more dense, and solids will have the greatest density. So, yes.
Conclusion: shape, kinetic energy, density, (and temperature if it's talking about a single type of molecule)
Answer:
Gases have no definite shape or volume. They are fluid, allowing particles/molecules to move freely.
The behavior of a gas is that the volume changes directly with temperature. With a constant volume, the pressure will be directly proportional to the amount of gas.
Explanation:
These are some of the properties I can think of
Given that, an experiment to measure the enthalpy change for the reaction of aqueous copper(II) sulfate, CuSO4(aq) and zinc, Zn(s) was carried out in a coffee cup calorimeter; the heat of the reaction in the whole system is calculated to be 2218.34 kJ
Heat of reaction (i.e enthalpy of reaction) is the quantity of heat that is required to be added or removed when a chemical reaction is taken place in order to maintain all of the compounds present at the same temperature.
The formula used to calculate the heat of the reaction can be expressed as follows:
Q = mcΔT
where:
- Q = quantity of heat transfer
- m = mass
- c = specific heat of water = 4.18 kJ/g °C (constant)
- ΔT = change in temparature
From the information given:
- The initial temperature (T₁) = 25° C
- The final temperature (T₂) = 91.5° C
∴
The change in temperature i.e. ΔT = T₂ - T₁
ΔT = 91.5° C - 25° C
ΔT = 66.5° C
The number of moles of CuSO₄ = 1.00 mol/dm³ × 50.0 cm³

= 0.05 moles
- Since the molar mass of CuSO₄ = 159.609 g/mol
Then;
Using the relation:

By crossing multiplying;
mass of CuSO₄ = number of moles of CuSO₄ × molar mass of CuSO₄
mass of CuSO₄ = 0.05 moles × 159.609 g/moles
mass of CuSO₄ = 7.9805 grams
∴
Using the formula from above:
Q = mcΔT
Q = 7.9805 g × 4.18 kJ/g °C × 66.5° C
Q = 2218.34 kJ
Therefore, we can conclude that the heat of the reaction is 2218.34 kJ
Learn more about the chemical reaction here:
brainly.com/question/20250226?referrer=searchResults
3 ethyl, 4 methylheptane. The compound is named by first identifying the longest carbon chain in the structure. in this case the chain has seven carbon atoms thus the prefix hept-.
Next you identify the substituent groups attached to the long carbon chain and name them from the lowest value of the integer assigned to the carbon atoms from either side. From the right, the ethyl group is attached to carbon number 3 while from the left, the methyl group is attached to carbon number 4. We therefore start with the right and name the attached groups first, including the carbon atoms to which they are attached.
Then we also take into consideration the highest number of bonds between the carbon atoms which is one from the question. Thus the suffix -ane is added if a maximum of one bond, -ene,if two bonds and -yne if three bonds.
Answer: The kilograms of water must evaporate from 8kg of a 25% salt solution to produce 40% salt solution is 3 kg.
Explanation:
According to the ratio and proportion:

where,
= concentration of ist solution = 25%
= mass of ist solution = 8 kg
= concentration of second solution = 40%
= mass of second solution = ? kg


Thus the final solution must have a mass of 5 kg , i.e (8-5)= 3 kg of mass must be evaporated.
Therefore, the mass that must be evaporated from 8kg of a 25% salt solution to produce 40% salt solution is 3 kg.