To calculate the force of impact F, first lets calculate the acceleration a of the ball:
a=v/t where v is the velocity of the ball and t is time
a=32/0.8=40 m/s²
To get the force F we need the Newtons second law:
F=m*a where m is the mass of the ball and a is the acceleration.
F=m*a= 0.2*40 = 8 N
So the impact force is F= 8 N.
Answer: B. 44.64 g
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Mass of reactants = mass of iron + mass of oxygen = mass of iron + 34.7 g
Mass of product = mass of iron oxide = 79.34 g
As Mass of reactants = Mass of product
mass of iron + 34.7 g = 79.34 g
mass of iron = 44.64 g
Thus 44.64 g of iron was used in the reaction
S orbital.
Group 1 elements have a general configuration
, where n represents the highest occupied Principal Energy Level. For example, Lithium has the valence configuration
whereas Cesium has
. Both of them belong to Group 1 of Periodic Table.
Group 2 elements have a general configuration of
. For example, Magnesium has
as its outer shell configuration while Strontium has the same as
.
We see that in both the cases, the outermost S orbital is being filled.
Water is more dense then air so it sorta holds the rock as it sinks