Answer:
the mass of the air in the classroom = 2322 kg
Explanation:
given:
A classroom is about 3 meters high, 20 meters wide and 30 meters long.
If the density of air is 1.29 kg/m3
find:
what is the mass of the air in the classroom?
density = mass / volume
where mass (m) = 1.29 kg/m³
volume = 3m x 20m x 30m = 1800 m³
plugin values into the formula
1.29 kg/m³ = <u> mass </u>
1800 m³
mass = 1.29 kg/m³ ( 1800 m³ )
mass = 2322 kg
therefore,
the mass of the air in the classroom = 2322 kg
Actually what the problem meant about the westward
component of the ball’s displacement is the horizontal component of the
displacement. To help us better understand the problem, I attached a figure of
the situation.
We can see from the figure that to solve for the value of
the horizontal component, we have to make use of the sin function. That is:
sin θ = side opposite to the angle / hypotenuse of the
triangle
sin 42 = x / 40 m
x = (40 m) sin 42
x = 26.77 m
Therefore the ball has a westward
displacement of about 26.77 m
Answer:
Being a plane mirror the Image is formed 3 metres beyond the mirror . So total distance is 3+3 = 6metres
Answer:
μ = 0.309
Explanation:
coefficient of kinetic friction is defined as the ratio of two forces, friction force and the normal force acting on the object.
θ = arctan(15/100)= 8.531⁰
In the vertical direction:
N = mgcosθ = 100 *9.8 *cos(8.531) = 970N
law of conservation of energy implies
mgsinθ - μNx = 1/2m(v₂²-v₁²)
100*9.8*sin (8.531) - μ(970*2) = 1/2(100)(0²-3²)
150.6 - 1940μ = 450
- 1940μ = -600.6
μ = 0.309