They were formed in the nuclear<span> fusion reaction inside older </span><span>stars.
As a star burns, fusion reactions inside its core create heavier elements. Those materials are released when the star dies of old age in an explosion.</span>
This is the same question as the one previously but with more details, so I will just use my previous answer.
1800 to 1820 is 20 minutes.1830 to 1838 is 8 minutes.1840 to 1905 is 25 minutes.
The total time travelled is 20+8+25 = 53 minutes = 3180 seconds.
The distance between Glasgow and Edinburgh is 28 + 12 + 34 = 74 km = 74000 m.
So, the average speed is 74000m/3180s = 23.27 m/s (4 s.f.)
Answer:
after a product has been improved and approved? reporting the results finding ways to lower costs selling a prototype determining criteria.
Explanation:
the answer is CaO because that's what my homework says is correct
Answer:

Explanation:
We can assume this problem as two concentric spherical metals with opposite charges.
We have also to take into account the formulas for the electric field and the capacitance. Hence we have

Where k is the Coulomb's constant. Furthermore, by taking into account the expression for the potential and by integrating
![dV=Edr\\\\V=\int_{R_1}^{R_2}Edr=-\int_{R_1}^{R_2}\frac{kQ}{r^2}dr\\\\V=kQ[\frac{1}{R_2}-\frac{1}{R_1}]](https://tex.z-dn.net/?f=dV%3DEdr%5C%5C%5C%5CV%3D%5Cint_%7BR_1%7D%5E%7BR_2%7DEdr%3D-%5Cint_%7BR_1%7D%5E%7BR_2%7D%5Cfrac%7BkQ%7D%7Br%5E2%7Ddr%5C%5C%5C%5CV%3DkQ%5B%5Cfrac%7B1%7D%7BR_2%7D-%5Cfrac%7B1%7D%7BR_1%7D%5D)
Hence, the capacitance is
![C=\frac{1}{k[\frac{1}{R_2}-\frac{1}{R_1}]}](https://tex.z-dn.net/?f=C%3D%5Cfrac%7B1%7D%7Bk%5B%5Cfrac%7B1%7D%7BR_2%7D-%5Cfrac%7B1%7D%7BR_1%7D%5D%7D)
but R1=a and R2=b

HOPE THIS HELPS!!