Your question looks a bit incomplete as you have the same contents in options a) and d). According to your list, I can't see the correct answer, but I can give you one.The difference between the potential energy of the products of the potential energy of the reactants is equal to the enthalpy of the reaction.
<u>Answer:</u> The mass of solid NaOH required is 80 g
<u>Explanation:</u>
Equivalent weight is calculated by dividing the molecular weight by n factor. The equation used is:
where,
n = acidity for bases = 1 (For NaOH)
Molar mass of NaOH = 40 g/mol
Putting values in above equation, we get:
Normality is defined as the umber of gram equivalents dissolved per liter of the solution.
Mathematically,
Or,
......(1)
We are given:
Given mass of NaOH = ?
Equivalent mass of NaOH = 40 g/eq
Volume of solution = 400 mL
Normality of solution = 5 eq/L
Putting values in equation 1, we get:
Hence, the mass of solid NaOH required is 80 g
Answer:
0.88g
Explanation:
The reaction equation:
2NaI + Cl₂ → 2NaCl + I₂
Given parameters:
Mass of Sodium iodide = 2.29g
Unknown:
Mass of NaCl = ?
Solution:
To solve this problem, we work from the known to the unknown.
First find the number of NaI from the mass given;
Number of moles =
Molar mass of NaI = 23 + 126.9 = 149.9g/mol
Now insert the parameters and solve;
Number of moles = = 0.015mol
So;
From the balanced reaction equation;
2 moles of NaI produced 2 moles of NaCl
0.015mole of NaI will produce 0.015mole of NaCl
Therefore;
Mass = number of moles x molar mass
Molar mass of NaCl = 23 + 35.5 = 58.5g/mol
Now;
Mass of NaCl = 0.015 x 58.5 = 0.88g
Answer:
The source side of the circuit includes all parts of the circuit between the positive side battery post and the load. The load is any device in the circuit that produces light, heat, sound or electrical movement when current is flowing. A load always has resistance and consumes voltage only when current is flowing.
Explanation:
plz Mark my answer in brainlist
and follow me plz
Answer:
<h2>9 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula
From the question we have
We have the final answer as
<h3>9 g/mL</h3>
Hope this helps you