Au^2S^3+ 3H^2 = 2Au + 3H^2S
Answer:
The reaction will be spontaneous
Explanation:
To determine if the reaction will be spontaneous or not at this temperature, we need to calculate the Gibbs's energy using the following formula:
<u>If the Gibbs's energy is negative, the reaction will be spontaneous, but if it's positive it will not.</u>
Calculating the
:
Now, other factor we need to determine is the sign of the S variation. When talking about gases, the more moles you have in your system the more enthropic it is.
In this reaction you go from 7 moles to 8 moles of gas, so you can say that you are going from one enthropy to another higher than the first one. This results in:
If the variation of S is positive, the Gibbs's energy will be negative always and the reaction will be spontaneous.
A random person put the answer for you
This sounds very much like a chicken-egg problem.
The first thing that formed must be hydrogen nuclei. The only other alternative is that the atom was created instantly, and the nuclei sprang forth at the same time as the atom, meaning that neither was technically first. The logic is that an atom can’t form without a nucleus, but it theoretically could be created instantly.
Answer:
See the answer below
Explanation:
<em>First, it should be understood that an endothermic reaction is one that absorbs energy in the form of heat from the surrounding.</em> The products of endothermic reactions usually have higher energy than their reactants. Hence, the ΔH° which is referred to as the enthalpy change is usually positive.
<u>Forgetting to cover the coffee-cup calorimeter means some of the heat energy absorbed by the reactants would be exchanged back to the surroundings - a loss.</u> It also means that the enthalpy change would be smaller compared to if the cup had been covered because some of the heat has been lost to the surrounding.