This set up of a conversion table should show you that if you multiply
the grams of BeI2 times .02 moles, it equals <span>5.256 g (your answer) </span>
The answer to this question will be C
Answer:
Ionic bonding occurs when atoms either gain or lose one or more valence electrons, resulting in the atom having either a negative or positive charge.
Through ionic bonding, an atom of each element will combine with the other to form a molecule, which is more stable since it now has a zero charge.
Explanation:
Answer:The nucleus contains two types of subatomic particles,
protons and neutrons.
Explanation:The protons have a positive electrical charge and the neutrons have no electrical charge. A third type of subatomic particle, electrons, move around the nucleus.
Answer:
- <u>2.59 × 10⁻⁷ m = 259 nm</u>
Explanation:
You need to calculate the wavelength of a photon with an energy equal to 463 kJ/mol, which is the energy to break an oxygen-hydrogen atom.
The energy of a photon and its wavelength are related by the Planck - Einstein equation:
Where:
- h = Planck constant (6.626 × 10⁻³⁴ J . s) and
- ν = frequency of the photon.
And:
Where:
- c = speed of light (3.00 × 10⁸ m/s in vacuum)
- λ = wavelength of the photon
Thus, you can derive:
Solve for λ:
Before substituting the values, convert the energy, 463 kJ/ mol, to J/bond
- 463 kJ/ mol × 1,000 J/kJ × 1 mol / 6.022 × 10 ²³ atom × 1 bond / atom
= 7.69×10²³ J / bond
Substitute the values and use the energy of one bond:
- λ = 6.626 × 10⁻³⁴ J . s × 3.00 × 10⁸ m/s / 7.69×10²³ J = 2.59 × 10⁻⁷ m
The wavelength of light is usually shown in nanometers:
- 2.59 × 10⁻⁷ m × 10⁹ nm / m = 259 nm ← answer