Answer:
No it does not i have tried it once before and it would not load for me and it froze the whole page site. But it might be different for you...
Explanation:
Answer:
The answer is 1385 x10∧ -3
Explanation:
Scientific notation is a quick way to represent a number using notation in exponential form or powers of base ten.
This notation allows us to express too large or small numbers easily.
<u>For example:
</u>
500 is written as 5x10∧2; Where the power 2 represents the number of 0's that follow 5.
0.0093 is written as 9.3x10∧-3; Where the power -3 represents the number of times the comma was moved to the right.
Density= Mass/Volume I am positive I just had an assignment on this
0.040 mol / dm³. (2 sig. fig.)
<h3>Explanation</h3>
in this question acts as a weak base. As seen in the equation in the question,
produces
rather than
when it dissolves in water. The concentration of
will likely be more useful than that of
for the calculations here.
Finding the value of
from pH:
Assume that
,
.
.
Solve for
:
![\dfrac{[\text{OH}^{-}]_\text{equilibrium}\cdot[(\text{CH}_3)_3\text{NH}^{+}]_\text{equilibrium}}{[(\text{CH}_3)_3\text{N}]_\text{equilibrium}} = \text{K}_b = 1.58\times 10^{-3}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5B%5Ctext%7BOH%7D%5E%7B-%7D%5D_%5Ctext%7Bequilibrium%7D%5Ccdot%5B%28%5Ctext%7BCH%7D_3%29_3%5Ctext%7BNH%7D%5E%7B%2B%7D%5D_%5Ctext%7Bequilibrium%7D%7D%7B%5B%28%5Ctext%7BCH%7D_3%29_3%5Ctext%7BN%7D%5D_%5Ctext%7Bequilibrium%7D%7D%20%3D%20%5Ctext%7BK%7D_b%20%3D%201.58%5Ctimes%2010%5E%7B-3%7D)
Note that water isn't part of this expression.
The value of Kb is quite small. The change in
is nearly negligible once it dissolves. In other words,
.
Also, for each mole of
produced, one mole of
was also produced. The solution started with a small amount of either species. As a result,
.
,
,
.