HCl(aq) + KOH(s) --> KCl(aq) + H2O(l)
Answer:
The value of the heat capacity of the Calorimeter
= 54.4 
Explanation:
Given data
Heat added Q = 4.168 KJ = 4168 J
Mass of water
= 75.40 gm
Temperature change = ΔT = 35.82 - 24.58 = 11.24 ° c
From the given condition
Q =
ΔT +
ΔT
Put all the values in above equation we get
4168 = 75.70 × 4.18 × 11.24 +
× 11.24
611.37 =
× 11.24
= 54.4 
This is the value of the heat capacity of the Calorimeter.
The temperature is 370K.
The volume of a given fuel pattern is immediately proportional to its absolute temperature at regular pressure (Charles's law). The volume of a given amount of fuel is inversely proportional to its pressure whilst temperature is held steady (Boyle's regulation).
Density is immediately proportional to stress and indirectly proportional to temperature. As stress increases, with temperature constant, density will increase. Conversely when temperature increases, with strain regular, density decreases.
The equations describing those legal guidelines are unique cases of the best gasoline regulation, PV = NRT, wherein P is the pressure of the gas, V is its extent, n is the number of moles of the gas, T is its kelvin temperature, and R is the ideal (common) gas constant.
Learn more about pressure here: brainly.com/question/25736513
#SPJ4
Answer is: ph value is 3.56.
Chemical reaction 1: H₂CO₃(aq) ⇄ HCO₃⁻(aq) + H⁺(aq); Ka₁ = 4,3·10⁻⁷.
Chemical reaction 2: HCO₃⁻(aq) ⇄ CO₃²⁻(aq) + H⁺(aq); Ka₂ = 5,6·10⁻¹¹.
c(H₂CO₃) = 0,18 M.
[HCO₃⁻] = [H⁺<span>] = x.
</span>[H₂CO₃] = 0,18 M - x.
Ka₁ = [HCO₃⁻] · [H⁺] / [H₂CO₃].
4,3·10⁻⁷ = x² / (0,18 M -x).
Solve quadratic equation: x = [H⁺] =0,000293 M.
pH = -log[H⁺] = -log(0,000293 M).
pH = 3,56; second Ka do not contributes pH value a lot.
Answer:
it would be the second choice