You have to find the calculate<span> the circumference first then you can just multiply the diameter by π, which is about 3.142. That gives you the distance for each </span>revolution<span>. Then you can multiply by the </span>number of revolutions<span> per minute.
</span>
Answer: (d)
Explanation:
Given
Mass of the first ram 
The velocity of this ram is 
Mass of the second ram 
The velocity of this ram 
They combined after the collision
Conserving the momentum
![\Rightarrow m_1v_1+m_2v_2=(m_1+m_2)v\\\Rightarrow 49\times (-7)+52\times (9)=(52+49)v\\\Rightarrow v=\dfrac{125}{101}\ m/s \quad[\text{east}]](https://tex.z-dn.net/?f=%5CRightarrow%20m_1v_1%2Bm_2v_2%3D%28m_1%2Bm_2%29v%5C%5C%5CRightarrow%2049%5Ctimes%20%28-7%29%2B52%5Ctimes%20%289%29%3D%2852%2B49%29v%5C%5C%5CRightarrow%20v%3D%5Cdfrac%7B125%7D%7B101%7D%5C%20m%2Fs%20%5Cquad%5B%5Ctext%7Beast%7D%5D)
Momentum after the collision will be

Therefore, option (d) is correct
Answer:
Q = 62383.44 Joules
Explanation:
Given that,
Mass of water, m = 710 gm
Initial temperature of water, 
Final temperature of water, 
The specific heat capacity of liquid water is, 
Heat transferred is given by :


Q = 62383.44 Joules
So, the amount of heat transferred is 62383.44 Joules. Hence, this is the required solution.
10 Km.
S= Speed
D= distance
T= time
S= d/t
but since you are solving for "d" the equation is d=st so you plug in 10 km/h for speed and 2.1 hours for time and just multiply them. The hours cancel out so you are left with 10km.