Answer:
What is freezing point?
A liquid's freezing point is determined at which it turns into a solid. Corresponding to the melting point, the freezing point often rises with increasing pressure. In the case of combinations and for some organic substances, such as lipids, the freezing point is lower than the melting point. The first solid which develops when a combination freezes often differs in composition from the liquid, and the development of the solid alters the composition of the remaining liquid, typically lowering the freezing point gradually. Utilizing successive melting and freezing to gradually separate the components, this approach is used to purify mixtures.
What is melting point?
The temperature at which a purified substance's solid and liquid phases may coexist in equilibrium is referred to as the melting point. A solid's temperature goes up when heat is added to it until the melting point is achieved. The solid will then turn into a liquid with further heating without changing temperature. Additional heat will raise the temperature of the liquid once all of the solid has melted. It is possible to recognize pure compounds and elements by their distinctive melting temperature, which is a characteristic number.
The difference between freezing point and melting point:
- While a substance's melting point develops when it transforms from a solid to a liquid, a substance's freezing point happens when a liquid transforms into a solid when the heat from the substance is removed.
- When the temperature rises, the melting point can be seen, and when the temperature falls, the freezing point can be seen.
- When a solid reaches its melting point, its volume increases; meanwhile, when a liquid reaches its freezing point, its volume decreases.
- While a substance's freezing point is not thought of as a distinctive attribute, its melting point is.
- While external pressure is a significant component in freezing point, atmospheric pressure is a significant element in melting point.
- Heat must be supplied from an outside source in order to reach the melting point for such a state shift. When a material is at its freezing point, heat is needed to remove it from the substance in order to alter its condition.
<em>Reference: Berry, R. Stephen. "When the melting and freezing points are not the same." Scientific American 263.2 (1990): 68-75.</em>
Answer:
D)Not enough information
Explanation:
According to Pascal's principle, the pressure exerted on the two pistons is equal:

Pressure is given by the ratio between force F and area A, so we can write

The force exerted on each piston is just equal to the weight of the corresponding mass:
, where m is the mass and g is the gravitational acceleration. So the equation becomes

Now we can rewrite the mass as the product of volume, V, times density, d:

We also know that 
So we can further re-arrange the equation (and simplify g as well):


We are also told that block B has bigger volume than block A:
. However, this information is not enough to allow us to say if the fraction on the right is greater than 1 or smaller than 1: therefore, we cannot conclude anything about the densities of the two objects.
F=ma
As velocity is constant, a=0
So, F=0
Hope this helps!
Answer:
answer is option d
Explanation:
just took unit test edg 2021
"Traditionally, physical science courses are categorized into four areas: physics, chemistry, earth sciences, and space sciences. It is important to understand that the arbitrary divisions of specialized knowledge are integrated into a basic overview of the physical laws that govern our universe." - Cameron University