Your answer would be Kinetic energy
Answer:
(3) 53°
Explanation:
We want to measure the angle that the rains form with the vertical wind shield, so we have to measure the angle relative to the vertical. This means that we can write the following equation

where
is the speed of the rain, which travels vertically
is the speed of the bus, which travels horizontally
Substituting, we find

From conservation of momentum, the ram force can be calculated similarly to rocket thrust:
F = d(mv)/dt = vdm/dt.
<span>In other words, the force needed to decelerate the wind equals the force that would be needed to produce it.
</span><span> v = 120/3.6 = 33.33 m/s
</span><span> dm/dt = v*area*density
</span> dm/dt = (33.33)*((45)*(75))*(1.3)
dm/dt = <span>
146235.375 </span><span>kg/s
</span><span> F = v^2*area*density
</span> F = (33.33)^2*((45)*(75))*(1.3) = <span>
<span>4874025 </span></span><span>N
</span> This differs by a factor of 2 from Bernoulli's equation, which relates velocity and pressure difference in reference not to a head-on collision of the fluid with a surface but to a fluid moving tangentially to the surface. Also, a typical mass-based drag equation, like Bernoulli's equation, has a coefficient of 1/2; however, it refers to a body moving through a fluid, where the fluid encountered by the body is not stopped relative to the body (i.e., brought up to its speed) like is the case in this problem.