Net force = (mass) x (acceleration) . . . . that's Newton's 2nd law of motion
Net force = (15 kg) x (10 m/s²)
<em>Net force = 150 Newtons</em>
Hi there!
We can use the following equation to relate angular velocity to linear velocity.

v = linear velocity (m/s)
ω = angular velocity (3.46 rad/sec)
r = distance from axis of rotation (.12 m)
Plug in the given values.

Answer:
The time taken to complete her run is 1.9 hr.
Explanation:
Speed is a scalar quantity and it is defined as the ratio of distance covered to the time taken to cover that distance. As distance is also a scalar quantity, so the directions given in the problem can be ignored. Thus, the distance covered by the jogger is the sum of kilometers given in problem.
Distance covered = 6+5+4 = 15 km
And the speed is given as 8 km/hr.
So the time taken will be ratio of distance to speed.
So the jogger will take 1.9 hr to complete her run.
Answer:
107 m down the incline
Explanation:
Given:
v₀ₓ = 25 m/s
v₀ᵧ = 0 m/s
aₓ = 0 m/s²
aᵧ = -10 m/s²
-Δy/Δx = tan 35°
Find: d
First, find Δy and Δx in terms of t.
Δy = v₀ᵧ t + ½ aᵧ t²
Δy = (0 m/s) t + ½ (-10 m/s²) t²
Δy = -5t²
Δx = v₀ₓ t + ½ aₓ t²
Δx = (25 m/s) t + ½ (0 m/s²) t²
Δx = 25t
Substitute:
-(-5t²) / (25t) = tan 35°
t/5 = tan 35°
t = 5 tan 35°
t ≈ 3.50 s
Now find Δy and Δx.
Δy ≈ -61.3 m
Δx ≈ 87.5 m
Therefore, the distance down the incline is:
d = √(x² + y²)
d ≈ 107 m