1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Illusion [34]
3 years ago
10

Whoever gets first gets brainiest 26 times 98

Mathematics
2 answers:
viva [34]3 years ago
7 0

Answer:

the answer is 2548

aleksandr82 [10.1K]3 years ago
5 0

Answer:

...You get 2,548... :) :)

You might be interested in
In this problem you will use undetermined coefficients to solve the nonhomogeneous equation y′′+4y′+3y=8te^−t+6e^−t−(9t+6)
Luden [163]

We're given the ODE,

<em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> ) - (9<em>t</em> + 6)

(where I denote exp(<em>x</em>) = <em>eˣ </em>)

First determine the characteristic solution:

<em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 0

has characteristic equation

<em>r</em> ² + 4<em>r</em> + 3 = (<em>r</em> + 1) (<em>r</em> + 3) = 0

with roots at <em>r</em> = -1 and <em>r</em> = -3, so the characteristic solution is

<em>y</em> = <em>C</em>₁ exp(-<em>t</em> ) + <em>C</em>₂ exp(-3<em>t</em> )

For the non-homogeneous equation, assume two ansatz solutions

<em>y</em>₁ = (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

and

<em>y</em>₂ = <em>at</em> + <em>b</em>

<em />

• <em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> ) … … … [1]

Compute the derivatives of <em>y</em>₁ :

<em>y</em>₁ = (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

<em>y</em>₁' = (2<em>at</em> + <em>b</em>) exp(-<em>t </em>) - (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

… = (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) exp(-<em>t </em>)

<em>y</em>₁'' = (-2<em>at</em> + 2<em>a</em> - <em>b</em>) exp(-<em>t </em>) - (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) exp(-<em>t </em>)

… = (<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) exp(-<em>t</em> )

Substitute them into the ODE [1] to get

→   [(<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) + 4 (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) + 3 (<em>at</em> ² + <em>bt</em> + <em>c</em>)] exp(-<em>t</em> ) = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> )

(<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) + 4 (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) + 3 (<em>at</em> ² + <em>bt</em> + <em>c</em>) = 8<em>t</em> + 6

4<em>at</em> + 2<em>a</em> + 2<em>b</em> = 8<em>t</em> + 6

→   4<em>a</em> = 8   and   2<em>a</em> + 2<em>b</em> = 6

→   <em>a</em> = 2   and   <em>b</em> = 1

→   <em>y</em>₁ = (2<em>t</em> ² + <em>t </em>) exp(-<em>t </em>)

(Note that we don't find out anything about <em>c</em>, but that's okay since it would have gotten absorbed into the first characteristic solution exp(-<em>t</em> ) anyway.)

• <em>y''</em> + 4<em>y'</em> + 3<em>y</em> = -(9<em>t</em> + 6) … … … [2]

Compute the derivatives of <em>y</em>₂ :

<em>y</em>₂ = <em>at</em> + <em>b</em>

<em>y</em>₂' = <em>a</em>

<em>y</em>₂'' = 0

Substitute these into [2] :

4<em>a</em> + 3 (<em>at</em> + <em>b</em>) = -9<em>t</em> - 6

3<em>at</em> + 4<em>a</em> + 3<em>b</em> = -9<em>t</em> - 6

→   3<em>a</em> = -9   and   4<em>a</em> + 3<em>b</em> = -6

→   <em>a</em> = -3   and   <em>b</em> = 2

→   <em>y</em>₂ = -3<em>t</em> + 2

Then the general solution to the original ODE is

<em>y(t)</em> = <em>C</em>₁ exp(-<em>t</em> ) + <em>C</em>₂ exp(-3<em>t</em> ) + (2<em>t</em> ² + <em>t </em>) exp(-<em>t </em>) - 3<em>t</em> + 2

Use the initial conditions <em>y</em> (0) = 2 and <em>y'</em> (0) = 2 to solve for <em>C</em>₁ and <em>C</em>₂ :

<em>y</em> (0) = <em>C</em>₁ + <em>C</em>₂ + 2 = 2

→   <em>C</em>₁ + <em>C</em>₂ = 0 … … … [3]

<em>y'(t)</em> = -<em>C</em>₁ exp(-<em>t</em> ) - 3<em>C</em>₂ exp(-3<em>t</em> ) + (-2<em>t</em> ² + 3<em>t</em> + 1) exp(-<em>t </em>) - 3

<em>y'</em> (0) = -<em>C</em>₁ - 3<em>C</em>₂ + 1 - 3 = 2

→   <em>C</em>₁ + 3<em>C</em>₂ = -4 … … … [4]

Solve equations [3] and [4] to get <em>C</em>₁ = 2 and <em>C</em>₂ = -2. Then the particular solution to the initial value problem is

<em>y(t)</em> = -2 exp(-3<em>t</em> ) + (2<em>t</em> ² + <em>t</em> + 2) exp(-<em>t </em>) - 3<em>t</em> + 2

7 0
3 years ago
Kwame bought a car for $25,000. The value of the car is decreasing at a rate of 6.5% each year. Write a function that represents
sweet-ann [11.9K]
<h3><u>The function that represents the price P of the car after x years is:</u></h3>

P = 25000(0.935)^x

<em><u>Solution:</u></em>

<em><u>The decreasing function is given as:</u></em>

y = a(1 - r)^t

Where,

y is future value

a is initial value

r is decreasing rate in decimal

t is time period

From given,

a = 25000

r = 6.5 \% = \frac{6.5}{100} = 0.065

number of years = x

future value = P

Therefore,

P = 25000(1 - 0.065)^x\\\\P = 25000(0.935)^x

Thus the function is found

8 0
4 years ago
What is the area of a rectangle with length 112 foot and width 34 foot?
Nastasia [14]

Answer:

<u>3808ft²</u>

Step-by-step explanation:

Formula: A=L×W

<u>A=</u> area

<u>L=</u>  length

<u>W=</u> width

A= 112 × 34= <u>3808ft²</u>

8 0
3 years ago
Which one is true!!!
irga5000 [103]
B and C I believe .............
7 0
3 years ago
In which number does the digit 4 have a value that is \dfrac{1}{10} 10 1 ​ start fraction, 1, divided by, 10, end fraction times
MrRissso [65]

Answer:

The digit 4 should be in the thousand position in the number sought;

Examples  

9.30<u>4</u>,

9.00<u>4</u>

Step-by-step explanation:

Here, we are required to consider decimal places of numbers

The digit 4 in the number 3.8463 is in the hundredth position

That is 0.04

We are asked to look for the number with a digit 4 that has the same value as \frac{1}{10} \times the digit 4 in 3.8463

That is

\frac{1}{10}  \times 0.04 = 0.004

Therefore, the digit 4 in the number sought should be in the thousandth position, that is 0.004

Example includes 9.304 or 9.004.

4 0
3 years ago
Other questions:
  • Round of 389,422 in 1,000
    14·1 answer
  • the length of a rectangle is more 3 more than the width. find the length of the rectangle if the perimeter is 98in​
    11·2 answers
  • A certain NYC taxi driver has decided to start charging a rate of r cents per person per mile. How much, in dollars, would it co
    12·1 answer
  • If csc θ = 13/12, find sin θ.
    14·1 answer
  • What is 9+10 plz show work <br> the right one will get brainly
    11·1 answer
  • Help pls.............
    12·1 answer
  • 1.
    8·1 answer
  • Please help me this is about to be overdue!!!
    5·1 answer
  • Given f(x)=4x - 7 8x +8<br> what is the end behavior of the function?
    15·1 answer
  • How many inches are in 12 1/2 feet
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!