We are tasked to solve for the volume of the gas that occupies when pressure and temperature changes to 400 Torr and 200 Kelvin from Torr and 400 Kelvin. We can use ideal gas law assuming constant gas composition and close system. The solution is shown below:
P1V1 / T1 = P2V2 / T2
V2 = P1V1T2 / T1P2
V2 = 800*72*200 / 400*400
V2 = 72 ml
The answer for the volume is 72 ml.
Answer:
D
Explanation:
The unit used to measure atomic mass is the atomic mass unit (amu). A single amu is equivalent to 1/12 the mass of an atom from the carbon-12 isotopIsotopes with different numbers of protons and neutrons will have an actual mass slightly different from the atomic mass calculated in atomic mass units.
Answer: of Earth's atmosphere occurs as energy, primarily from the sun, causes liquid water to transform to another phase. As this occurs, liquid water absorbs energy, causing it to evaporate and form water vapor. The process of evaporation absorbs tremendous amounts of incoming solar energy.
Explanation:
Answer:
the atomic number is how you find the charge
Answer:
The concentration of cyclobutane after 875 seconds is approximately 0.000961 M
Explanation:
The initial concentration of cyclobutane, C₄H₈, [A₀] = 0.00150 M
The final concentration of cyclobutane, [
] = 0.00119 M
The time for the reaction, t = 455 seconds
Therefore, the Rate Law for the first order reaction is presented as follows;
![\text{ ln} \dfrac {[A_t]}{[A_0]} = \text {-k} \cdot t }](https://tex.z-dn.net/?f=%5Ctext%7B%20ln%7D%20%5Cdfrac%20%7B%5BA_t%5D%7D%7B%5BA_0%5D%7D%20%3D%20%5Ctext%20%7B-k%7D%20%5Ccdot%20t%20%7D)
Therefore, we get;
![k = \dfrac{\text{ ln} \dfrac {[A_t]}{[A_0]}} {-t }](https://tex.z-dn.net/?f=k%20%3D%20%5Cdfrac%7B%5Ctext%7B%20ln%7D%20%5Cdfrac%20%7B%5BA_t%5D%7D%7B%5BA_0%5D%7D%7D%20%20%7B-t%20%7D)
Which gives;

k ≈ 5.088 × 10⁻⁴ s⁻¹
The concentration after 875 seconds is given as follows;
[
] = [A₀]·
Therefore;
[
] = 0.00150 ×
= 0.000961
The concentration of cyclobutane after 875 seconds, [
] ≈ 0.000961 M