Answer: The answer is 6 :D
Answer:
Step-by-step explanation:
For each component, there are only two possible outcomes. Either it fails, or it does not. The components are independent. We want to know how many outcomes until r failures. The expected value is given by

In which r is the number of failures we want and p is the probability of a failure.
In this problem, we have that:
r = 1 because we want the first failed unit.
![p = 0.4[\tex]So[tex]E = \frac{r}{p} = \frac{1}{0.4} = 2.5](https://tex.z-dn.net/?f=p%20%3D%200.4%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3ESo%3C%2Fp%3E%3Cp%3E%5Btex%5DE%20%3D%20%5Cfrac%7Br%7D%7Bp%7D%20%3D%20%5Cfrac%7B1%7D%7B0.4%7D%20%3D%202.5)
The expected number of systems inspected until the first failed unit is 2.5
I think it's true because its the same data set just put in order backwards.
Hope this helps!! :-)
Answer:
a. 
b. 
c. 
d. 
Step-by-step explanation:
Given

Solving (a): When g(x) = 0
Substitute 0 for g(x)


Solve for 8x

Solve for x

Solving (b): when x = 0
Substitute 0 for x




Solving (c): When g(x) = -5
Substitute -5 for g(x)


Solve for 8x


Solve for x


Solving (d): When x = 3
Substitute 3 for x



