Answer:
0.425M NaOH assuming the volume of KHP was 25.50mL and the volume of the NaOH solution was 30.0mL
Explanation:
The KHP reacts with NaOH as follows:
KHP + NaOH → KNaP + H₂O
<em>Where 1 mole of KHP reacts per mole of KNaP</em>
<em />
That means, the moles of KHP added to the NaOH solution = Moles NaOH at equivalence point. With the moles of NaOH and the volume in liters we can find the molar concentration of NaOH.
<em>Assuming the volume added of KHP was 25.50mL and the solution of NaOH contains 30.0mL (0.0300L), the concentration of the NaOH is:</em>
<em />
<em>Moles KHP = Moles NaOH:</em>
25.50mL = 0.02550L * (0.500mol / L) = 0.01275 moles KHP = Moles NaOH
<em>Molarity NaOH:</em>
0.01275 moles NaOH / 0.0300L =
<h3>0.425M NaOH assuming the volume of KHP was 25.50mL and the volume of the NaOH solution was 30.0mL</h3>
The kind of magma that is found in the most explosive volcanoes, the composite volcanoes, is andesitic magma. It is magma that is quite high in silica content which makes it thick, sticky and gooey. Great lumps of this sticky magma cool at the top of the volcano to form a sealed cap. Magma beneath the cap builds up and pressure mounts and eventually becomes too much to be contained and the magma violently erupts out from the top, blowing out the cap and shooting miles up into the air and in all directions.
The kind of magma found in gentle volcanoes such as shield volcanoes is runny in consistency. It has very minimal amounts of silica and is not thick but loose. It therefore tends to trickle out of the top of the volcano rather than erupt or explode.
Answer:
Wavelength, 
Explanation:
Given that,
Frequency, 
We need to find the wavelength of a photon of light. The relation between frequency and wavelength is as follows :

So, the wavelength of the light is
.
Answer:Number of proton present in the nucleus of an atom of sulfur is 16.
Explanation:
Protons, neutrons and electrons are subatomic particles of an atom.
Atomic number of an atom is equal to the total number of protons present in the nucleus of an atom.
Z = total number of protons
Atomic mass of an atom is defined as sum of the number of protons and neutrons present in the nucleus of an atom.
In neutral atom there are equal number of protons and electron.
A = number of proton + number of neutrons
According to question, there are 16 electrons in neutral atom of Sulfur.
in a neutral atom:
Number of electrons = Number of protons = 16
Number of proton present in the nucleus of an atom of sulfur is 16.
Answer:
[Kr] 4d10 5s2 5p4
Explanation:
The Symbol I represents Iodine. It has atomic number of 53. The full electronic configuration is given as;
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p5
However the question requested for the configuration of I+.
I+ is a cation and it simply refers to an iodine atom that has lost a single electron. The electronic configuration of I+ is given as;
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p4
Using Noble gas shorthand representation, we have;
[Kr] 4d10 5s2 5p4