Answer:
The cart would speed up.
Explanation:
According to Newton's 1st law, object subjected to no force, or net force 0, would have a constant speed. In our case the cart is initially at constant speed, meaning the man exerts a force that is equal to friction force. If he increases the force on the cart, the net force would no longer be 0. The cart would gain an acceleration and increases its speed.
Answer:
Explanation:
a ) If the image of this object is viewed with the eyepiece adjusted for minimum eyestrain (image at the far point of the eye) , the image from object lens must have been formed at the focus of eye lens . So the objective image must have been formed at 19.5 - 2.75 = 16.75 cm from the object lens.
b ) Let the object distance be u
For object lens
v = 16.75 cm , f = .35 cm
1/v - 1/u = 1/f
1/16.75 - 1/u = 1/ .35
.0597 - 1/u = 2.857
1/u = - 2.7973
u = .3575 cm
c ) Angular magnification
= 
v₀ and u₀ are image and object distance for object lens , D = 25 cm and f_e is focal length of eye lens
= (16.75 / .3575) x( 25 / 2.75)
= 46.85 x 9.09
= 426
Answer:
Yes, because the wrench is moving at the same speed as the sailboat.
The main difference is that a person on the ground would see the wrench moving diagonally, while a person on the boat would see the wrench falling straight down,
This difference in paths lead to the relativistic change in lengths.
Where’s the answers? I can help
fiber-optic cable is composed of two concentric layers, called the core and the cladding, as illustrated in Figure 3-1. The core and cladding have different refractive indices, with the core having a refractive index of n1, and the cladding having a refractive index of n2. The index of refraction is a way of measuring the speed of light in a material. Light travels fastest in a vacuum. The actual speed of light in a vacuum is 300,000 kilometers per second, or 186,000 miles per second.