A girl standing on a floor would have two opposite forces acting on it. These forces are the weight and the normal force. Since no other forces are acting and that the girl is at rest, then the weight must equate to the normal force. Therefore, the supporting force would be:
F = mg = 55kg (9.81 m/s^2) = 539.55 N
Answer: Option D: 5.5×10²Joules
Explanation:
Work done is the product of applied force and displacement of the object in the direction of force.
W = F.s = F s cosθ
It is given that the force applied is, F = 55 N
The displacement in the direction of force, s = 10 m
The angle between force and displacement, θ = 0°
Thus, work done on the object:
W = 55 N × 10 m × cos 0° = 550 J = 5.5 × 10² J
Hence, the correct option is D.
Answer:

Explanation:
From this exercise, our knowable variables are <u>hight and initial velocity </u>


To find how much time does the <u>ball strike the ground</u>, we need to know that the final position of the ball is y=0ft


Solving for t using quadratic formula


or 
<u><em>Since time can't be negative the answer is t=6.96s</em></u>
Answer:
Acceleration will increase.
Explanation:
The relation between force, mass and acceleration according to the Newton's second law of motion is given as:
F = ma
We are given that the driving force on the truck remains constant, so F is constant here. We can rewrite the above equation as:

Since, F is constant, the acceleration of the truck is inversely proportional to the mass.
There is a hole at the bottom of the truck through which the sand is being lost at a constant rate. Since, the sand is being lost, the overall mass of the truck is being reduced.
Since, the acceleration of the truck is inversely proportional to the mass, the reduced mass will result in an increased acceleration.
So, the acceleration of the truck will increase.