High specific heat of the water. Option (c)
What is Specific heat?
The amount of heat required to increase the temperature of one gram of a substance by one degree Celsius is referred to as the substance's specific heat. Typically, calories or joules are used per gram and degree Celsius when referring to the units of specific heat.
The moderate temperature of islands has much to do with the water's high specific heat. The typical off-water is more significant than this clear land or soil. Due to this fact, water absorbs and releases eat more slowly. In comparison to the land.
Hence, the water has high specific heat.
To learn more about specific heat the link is given below:
brainly.com/question/12982780?
#SPJ4
The answer to this is Animal habitation
Answer:
u = 11.6 m/s
Explanation:
The end of a launch ramp is directed 63° above the horizontal. A skier attains a height of 10.9 m above the end of the ramp.
Maximum height, H = 10.9
Let v is the launch speed of the skier. The maximum height attained by the projectile is given by :


u = 11.6 m/s
So, the launch speed of the skier is 11.6 m/s. Hence, this is the required solution.
Answer:
See the explanation below
Explanation:
Density is defined as the relationship between mass and volume, i.e. the following equation can be used:
density = m/v
where:
density [kg/m^3]
m = mass [kg]
v = volume [m^3]
If we change the volume of a body by reducing its size, its mass will also decrease proportionally with a density as seen in the equation.
m = density*v
To understand this concept more clearly, let's use the following example:
We know that the density of water is equal to 1000 [kg/m^3], that is, 1 cubic meter of water contains 1000 kilograms of water, using the equation.
1000 = m /1
m = 1000*1 = 1000 [kg]
Now if we have 500 kilograms of water, that would pass with the volume so that the density remains constant.
1000 = 500/v
v = 500/1000
v = 0.5 [m^3]
We can see that the volume of water has halved. Since the mass of water was reduced by half. That is, the relationship between mass and volume is proportional to the density of the material or substance.