Answer:
find the diagram in the attachment.
Explanation:
Let vi = 12 m/s be the intial velocy when the ball is thrown, Δy be the displacement of the ball to a point where it starts returning down, g = 9.8 m/s^2 be the balls acceleration due to gravity.
considering the motion when the ball thrown straight up, we know that the ball will come to a stop and return downwards, so:
(vf)^2 = (vi)^2 + 2×g×Δy
vf = 0 m/s, at the highest point in the upward motion, then:
0 = (vi)^2 + 2×g×Δy
-(vi)^2 = 2×g×Δy
Δy = [-(vi)^2]/2×g
Δy = [-(-12)^2]/(2×9.8)
Δy = - 7.35 m
then from the highest point in the straight up motion, the ball will go back down and attain the speed of 12 m/s at the same level as it was first thrown
True. There are forced acting on it, but as they're balanced it is unmoving
Answer:
You may tip the car over or crash.
Explanation:
Going really fast at high speeds and turn a corner might make the car crash into an object or fall over.
Answer:
Relative dating is used to determine a fossils approximate age by comparing it to similar rocks and fossils of known ages. Absolute dating is used to determine a precise age of a fossil by using radiometric dating to measure the decay of isotopes, either within the fossil or more often the rocks associated with it.