Answer: independent variable: Size of the feather.
Explanation:
In an experiment, the manipulated/independent variable is, as the name implies, the variable that the scientist can control.
In this case, the scientist has only one variable that he can control at will, and this is the size of the feather (he can choose which feather he uses for the experiment)
So the manipulated variable will be the size of the feather.
And the dependent variable is the one that "answers" to the changes in the manipulated variable.
In this case, will be the time that it takes to the feather to fall to the ground.
Explanation:
At the instant of release there is no force but an acceleration of a, this means the ball is falling freely under the force of gravity. Then the acceleration would be due to force of gravity and acceleration a = g =9.81 m/s^2.
g= acceleration due to gravity
From rest, a rock is dropped from a garage roof. The roof is 6.0 meters above ground level. The rock will reach the earth at a speed of 10.849 meters per second.
<h3>What is velocity?</h3>
The change of displacement with respect to time is defined as the velocity. Velocity is a vector quantity.
it is a time-based component. Velocity at any angle is resolved to get its component of x and y-direction.
Given data:
V(Final velocity)=? (m/sec)
h(height)= 6.0 m
u(Initial velocity)=0 m/sec
g(gravitational acceleration)=9.81 m/s²
Newton's third equation of motion:

Hence, the velocity of the rock as it hits the ground will be 10.849 m/sec.
To learn more about the velocity refer to the link ;
brainly.com/question/862972
#SPJ1
Answer:
All statement are correct.
Explanation:
1. Electric field lines are the same thing as electric field vectors, electric field are mathematically vectors quantity. These vectors point in the direction in which a positive test charge would move.
2. Electric field line drawings allow you to determine the approximate direction of the electric field at a point in space. Yes it is correct tangent drawn at any point on these lines gives the direction of electric filed at that point.
3. The number of electric field lines that start or end at a charged particle is proportional to the magnitude of charge on the particle, is a correct statement.
4.The electric field is strongest where the electric field lines are close together, again a correct statement as relative closeness of field lines indicate a stronger strength of electric field.
Hence we can say that all the statement are correct.
Answer:
1)
a) f = 1m × 2 × (5A / √2) × (5A / √2) / 0.003m = 0.00166... (66 is repeating)
b) The currents on two wires on a AC chord are always moving in opposite direction and so they are always replusing.
c) There needs to be a sheath to dampen the replusing, fluctuating force of the wires.
2)
a) v = √( ( (-2)(-1.6 × 10^(-16))(3000V) ) / (2.84 × 10^(-20)kg) ) = 5.81227 × 10^3
b) Any ion transversing a chamber having a magnetic field will deflect.
c) The direction of the electric field is vertical because it's perpendicular to the plates. The electric field magnitude is independent from the magnitude of the magnetic field and charge. So it's not possible to find the magnitude of the electric field, without knowing the voltage on the plates, the distance between the plates, and the dielectric constant.
d) Assuming the mangetic field remained, the path of the negative ions will be deflected vertically given that the magnetic field is horizontally perpendicular to the negative charged ions movement.
Sorry it took so long :) If anything is incorrect please let me know.