A 100 g cart is moving at 0.5 m/s that collides elastically from a stationary 180 g cart. Final velocity is calculated to be 0.25m/s.
Collision in which there is no net loss in kinetic energy in the system as a result of the collision is known as elastic collision . Momentum and kinetic energy both are conserved quantities in elastic collisions.
Collision in which part of the kinetic energy is changed to some other form of energy is inelastic collision.
For an elastic collision, we use the formula,
m₁V₁i+ m₂V₂i = m₁V1f + m₂V₂f
For a perfectly elastic collision, the final velocity of the 100g cart will each be 1/2 the velocity of the initial velocity of the moving cart.
Final velocity = 0.5/2
=0.25 m/s.
To know more about elastic collision, refer
brainly.com/question/7694106
#SPJ4
It goes in the downward direction
Answer:
The work done on the box is 80 J.
Explanation:
Given that,
Weight of box = 40 N
Distance = 2 meter
We need to calculate the work done
Using formula of work done


Where, x = distance
mg = weight
Put the value into the formula



Hence, The work done on the box is 80 J.
Air can go in any direction. . .
Answer:
Vprom = 0.00347[km/min]
Explanation:
We can calculate each of the average speeds and then perform the overall average between the two speeds.
V1 = 6/54
V1 = 0.111[km/min]
V2 = 1/16
V2 = 0.0625[km/min]
![V_{prom} = \frac{V_{1} + V_{2}}{2} \\V_{prom} = \frac{0.1111 + 0.0625}{2}\\V_{prom} = 0.00347 [km/min]](https://tex.z-dn.net/?f=V_%7Bprom%7D%20%3D%20%5Cfrac%7BV_%7B1%7D%20%2B%20V_%7B2%7D%7D%7B2%7D%20%20%5C%5CV_%7Bprom%7D%20%3D%20%5Cfrac%7B0.1111%20%2B%200.0625%7D%7B2%7D%5C%5CV_%7Bprom%7D%20%3D%200.00347%20%5Bkm%2Fmin%5D)