Assuming that the vectors are acting along the same axis, we
could just simply add or subtract the vectors. Since the F1 is greater than F2,
there would be motion, there would be acceleration, and that the direction of
motion is along the F1.
Fundamental frequency,
f=v2l=T/μ−−−−√2l
=(50)/0.1×10−3/10−22×0.6−−−−−−−−−−−−−−−−−−−√
=58.96Hz
Let, n th harmonic is the hightest frequency, then
(58.93)n = 20000
∴N=339.38
Hence, 339 is the highest frequency.
∴fmax=(339)(58.93)Hz=19977Hz.
<h3>
What is frequency?</h3>
In physics, frequency is the number of waves that pass a given point in a unit of time as well as the number of cycles or vibrations that a body in periodic motion experiences in a unit of time. After moving through a sequence of situations or locations and then returning to its initial position, a body in periodic motion is said to have experienced one cycle or one vibration. See also simple harmonic motion and angular velocity.
learn more about frequency refer:
brainly.com/question/254161
#SPJ4
Answer: d= 0.57* l
Explanation:
We need to check that before ladder slips the length of ladder the painter can climb.
So we need to satisfy the equilibrium conditions.
So for ∑Fx=0, ∑Fy=0 and ∑M=0
We have,
At the base of ladder, two components N₁ acting vertical and f₁ acting horizontal
At the top of ladder, N₂ acting horizontal
And Between somewhere we have the weight of painter acting downward equal to= mg
So, we have N₁=mg
and also mg*d*cosФ= N₂*l*sin∅
So,
d= * tan∅
Also, we have f₁=N₂
As f₁= чN₁
So f₁= 0.357 * 69.1 * 9.8
f₁= 241.75
Putting in d equation, we have
d= * tan 58
d= 0.57* l
So painter can be along the 57% of length before the ladder begins to slip
0.25 m/s squared
hope this helps x