Answer:
i think the answer is gravity
Let's start with an infinitive: it has a form "to..." - only sentences C and D have a phrase like this, so we can exclude other options.
Among those, C does not have a gerund, which is a verbal form: "dreaming" has a function of a noun there.
So the correct answer is the remaining one, D.
The can be found elsewhere and as follows:
<span>A. of magnetic effects.
B. the ball tries to pull the rod’s electrons over to it.
C. the rod polarizes the metal.
D. the rod and the ball have opposite charges.
</span><span>
I believe the correct answer is option C. If a negatively charged rod is held near a neutral metal ball, the ball is attracted to the rod. this happens because </span>the rod polarizes the metal. Hope this answers the question.
Kinetic energy = (1/2) (mass) (speed)²
The rock's kinetic energy is not
(1/2) (4 kg) (10 m/s)²
= (1/2) (4 kg) (100 m²/s²)
= 200 Joules .
It may be more, or it may be less. The only thing
we can be sure of is that it is not 200 Joules.
With the increase in the temperature of the star, the brightness of the stars will also increase.
<u>Explanation:</u>
The brightness and surface temperature of stars ordinarily increment with age. A star stays close to its underlying situation on the fundamental arrangement until a lot of hydrogen in the center has been devoured, at that point starts to advance into a progressively brilliant star.
The brightness of a star relies upon its structure and how far it is from the planet. Space experts characterize star brilliance as far as clear extent — how splendid the star shows up from Earth — and outright greatness — how brilliant the star shows up at a standard separation