Answer:
im gunna save my answer so no one can take it:)
Explanation:
I tried my best
It follows that the reaction is spontaneous at high temperatures Option A.
<h3>What is ΔS ?</h3>
The term ΔS is referred to as the change in the entropy of the system. Now recall that entropy is defined as the degree of disorderliness in a system. If a system is highly disorderly then it means that it has a high entropy. Also, ΔH has to do with the heat change that accompanies a reaction.
We know that both the entropy and the heat change can both either be positive or negative. Now we know that the equation ΔG = ΔH - TΔS can be used to ascertain whether or not a reaction will be spontaneous. If the result is negative, then the reaction will be spontaneous.
As such, when then it follows that the reaction is spontaneous at high temperatures Option A.
Learn more about spontaneous reaction:brainly.com/question/13790391
#SPJ1
Answer:- partial pressure of Kr = 0.306 atm, partial pressure of oxygen = 0.264 atm and partial pressure of carbon dioxide = 0.396 atm
Total pressure is 0.966 atm
Solution:- moles of Kr = 21.7 g x (1mol/83.8g) = 0.259 mol
moles of oxygen = 7.18 g x (1mol/32g) = 0.224 mol
moles of carbon dioxide = 14.8 g x (1mol/44g) = 0.336 mol
Volume of container = 23.1 L and the temperature is 59 + 273 = 332 K
From ideal gas law equation, P = nRT/V
partial pressure of Kr = (0.259 x 0.0821 x 332).23.1 = 0.306 atm
partial pressure of oxygen = (0.224 x 0.0821 x 332)/23.1 = 0.264 atm
partial pressure of carbon dioxide = (0.336 x 0.0821 x 332)/23.1 = 0.396 atm
Total pressure of the gas mixture = 0.306 atm + 0.264 atm + 0.396 atm = 0.966 atm
Avogadro's hypothesis says that 2.0 L of Cl2 (g) occupies the same volume as 2.0 L of CO2. So <span>(2.0L of Cl2 (g)
</span>