The least dense layer of the earth is the crust.
The heat change is related to specific heat as
Heat change = mass of substance X specific heat X change in temperature
So if we are considering same amount of substance
and we are starting with the same temperature
the change in temperature will be inversely proportional to the specific heat
higher the specific heat lower the temperature change
Thus the change in temperature will be least for the substance with highest specific heat.
Answer: Hydrogen
I believe it was Hiroshima. Followed by Nagasaki. Moscow was never bombed in my knowledge, and Auschwitz was a death camp, so it wasn't bombed.
THE KINETIC MOLECULAR THEORY STATES THAT ALL PARTICLES OF AN IDEAL GAS ARE IN CONSTANT MOTION AND EXHIBITS PERFECT ELASTIC COLLISIONS.
Explanation:
An ideal gas is an imaginary gas whose behavior perfectly fits all the assumptions of the kinetic-molecular theory. In reality, gases are not ideal, but are very close to being so under most everyday conditions.
The kinetic-molecular theory as it applies to gases has five basic assumptions.
- Gases consist of very large numbers of tiny spherical particles that are far apart from one another compared to their size.
- Gas particles are in constant rapid motion in random directions.
- Collisions between gas particles and between particles and the container walls are elastic collisions.
- The average kinetic energy of gas particles is dependent upon the temperature of the gas.
- There are no forces of attraction or repulsion between gas particles.
Answer:
6.17 g/cm³
Explanation:
Data given:
one side of cube = 0.53 cm
mass of the cube is 0.92 g
density of the cube = ?
Solution:
First we will calculate for volume the cube
As we know all the sides or edges of a cube are equal so volume equation will be
So,
V = length x width x height
V = e³
as on side = 0.53 cm
then
V = (0.53 cm)³
V = 0.149 cm³
Now we will calculate density of cube
To calculate density, formula will be used
d = m/v . . . . . (1)
where
d = density
m = mass
v = volume
put values in above formula 1
d = 0.92 g / 0.149 cm³
d = 6.17 g/cm³
so. the density of cube = 6.17 g/cm³