Answer:
The resistance would be 64.10 ohms.
have a nice day my dude
Answer:
In a neutral molecule, the sum of the bonding valance electrons must be equal. So the products of the negative element and its charges and the positive element and its charge must be equal.
Explanation:
C1×N1 = C2×N2
If we have a 3 valance electrons , the 'A' charge will be either +3 or -5 for a full octet and valance electron in 'B' atoms will mostly result in acquisition of additional electrons (2) for an octet and relative charge of -2.
Balancing the two,
3 × A = -2 × B
To be equal, A = 2 and B = 3
Therefore, A²B³
Answer:
vHe / vNe = 2.24
Explanation:
To obtain the velocity of an ideal gas you must use the formula:
v = √3RT / √M
Where R is gas constant (8.314 kgm²/s²molK); T is temperature and M is molar mass of the gas (4x10⁻³kg/mol for helium and 20,18x10⁻³ kg/mol for neon). Thus:
vHe = √3×8.314 kgm²/s²molK×T / √4x10⁻³kg/mol
vNe = √3×8.314 kgm²/s²molK×T / √20.18x10⁻³kg/mol
The ratio is:
vHe / vNe = √3×8.314 kgm²/s²molK×T / √4x10⁻³kg/mol / √3×8.314 kgm²/s²molK×T / √20.18x10⁻³kg/mol
vHe / vNe = √20.18x10⁻³kg/mol / √4x10⁻³kg/mol
<em>vHe / vNe = 2.24</em>
<em />
I hope it helps!