Answer:
Explanation:
Given
Velocity = 388m/s
Height S = 2.89m
Required
Time
Using the equation of motion
S =ut+1/2gt²
2.89 = 388t+1/2(9.8)t²
2.89 = 388t+4.9t²
Rearrange
4.9t²+388t-2.89 =0
Factorize
t = -388±√388²-4(4.9)(2.89)/2(4.9)
t= -388±√(388²-56.644)/9.8
t = -388±387.93/9.8
t =0.073/9.8
t = 0.00744 seconds
Heat from burning fuel warms the walls of the firebox section of the furnace in
A. a hot-water heating system.
B. a hot-air heating system.
C. a compressor compartment.
D. an evaporation system.
Answer:
F_aplied = fr
Explanation:
Newton's second law states that the force is proportional to the acceleration of the system, as in this case they indicate that the body moves at constant speed, the acceleration is zero, therefore
F_applied - fr = 0
F_aplied = fr
therefore the force applied by people is equal to the friction force
Answer:
45°.
It is a property of the parabolas.. When the angle between a parabola and the x-axis is 45° the range is maximum.
Answer:
Tangential velocity = 10.9 m/S
Explanation:
As per the data given in the question,
Force = 20 N
Time = 1.2 S
Length = 16.5 cm
Radius = 33.0 cm
Moment of inertia = 1200 kg.cm^2 = 1200 × 10^(-4) kg.m^2
= 1200 × 10^(-2) m^2
Revolution of the pedal ÷ revolution of wheel = 1
Torque on the pedal = Force × Length
= 20 × 16.5 10^(-2)
= 3.30 N m
So, Angular acceleration = Torque ÷ Moment of inertia
= 3.30 ÷ 12 × 10^(-2)
= 27.50 rad ÷ S^2
Since wheel started rotating from rest, so initial angular velocity = 0 rad/S
Now, Angular velocity = Initial angular velocity + Angular Acceleration × Time
= 0 + 27.50 × 1.2
= 33 rad/S
Hence, Tangential velocity = Angular velocity × Radius
= 33 × 33 × 10^(-2)
= 10.9 m/S