Answer:
(a) 161.57 N
(b) 0.958 m/s^2
Explanation:
Force applied, F = 220 N
mass of crate, m = 61 kg
μ = 0.27
(a) The magnitude of the frictional force,
f = μ N
where, N is the normal reaction
N = m x g = 61 x 9.81 = 598.41 N
So, the frictional force, f = 0.27 x 598.41
f = 161.57 N
(b) Let a be the acceleration of the crate.
Fnet = F - f = 220 - 161.57
Fnet = 58.43 N
According to newton's second law
Fnet = mass x acceleration
58.43 = 61 x a
a = 0.958 m/s^2
Thus, the acceleration of the crate is 0.958 m/s^2.
Answer: just do the same thing, but the problems are different
Explanation: try you best
Answer:
14m/s
Explanation:
Given parameters:
Radius of the curve = 50m
Centripetal acceleration = 3.92m/s²
Unknown:
Speed needed to keep the car on the curve = ?
Solution:
The centripetal acceleration is the inwardly directly acceleration needed to keep a body along a curved path.
It is given as;
a =
a is the centripetal acceleration
v is the speed
r is the radius
Now insert the parameters and find v;
v² = ar
v² = 3.92 x 50 = 196
v = √196 = 14m/s
Answer:
Density is an important physical property of matter. It reflects how closely packed the particles of matter are. When particles are packed together more tightly, matter has greater density.
Explanation:
Answer:
The correct answer is - Damage to the nerves that control the diaphragm.
Explanation:
Abdominal breathing is a condition in which inferior half of the lungs can be seen relaxing or contracting and expanding with the breath. This condition occurs due to the various conditions that lead to the respiratory.
It is cause due to the damage to nerves that control the diaphragm. The phrenic nerve is one of the nerve of diaphragm initiates in the neck and passes down.
Thus, the correct answer is - Damage to the nerves that control the diaphragm.
The phrenic nerve is a nerve that originates in the neck (C3–C5) and passes down between the lung and heart to reach the diaphragm.