The most accurate answer to that process is definitely precision. The Rotary encoder is an electro-mechanical device that converts the angular position or motion of a shaft or axle to analog or digital output signals. The efficiency of these devices is subject to the position and angle of the axis in front of the encoder.
Most cars use reduction systems in their gearboxes that convert a certain signal input into an output. Mechanically for example, a 20: 1 reduction box already infers that if there is a revolution in the input at the output there are 20. That same transferred to the encoder pulses would imply greater precision.
For example a decoder with 50 holes would have to read 1000 pulses (50 * 20) which is basically a degree of accuracy of 0.36 degrees. In this way it is possible to conclude that if the assembly of the encoder is carried out next to the motor and not at the output, it can be provided with greater precision at the time of reading.
Answer:
A. True
Explanation:
When an electromagnetic field wave strikes a conductor, say a wire, it induces an alternating current that is proportional to the wave in the conductor. This is a reversal of generating electromagnetic wave from accelerating a charged particle. This phenomenon is used in radio antena for receiving radio wave signals and also use in medicine for body scanning.
Answer:
(a) See attachment
(b) The two planes are parallel because the intercepts for plane [220] are X = 0,5 and Y = 0,5 and for plane [110] are X = 1 and Y = 1. When the planes are drawn, they keep the same slope in a 2D plane.
(c) 
Explanation:
(a) To determine the intercepts for an specific set of Miller indices, the reciprocal intercepts are taken as follows:
For [110]

For [220]

The drawn of the planes is shown in the attachments.
(b) Considering the planes as two sets of 2D straight lines with no intersection to Z axis, then the slope for these two sets are:
For (1,1):

For (0.5, 0.5):

As shown above, the slopes are exactly equal, then, the two straight lines are considered parallel and for instance, the two planes are parallel also.
(c) To calculate the d-spacing between these two planes, the distance is calculated as follows:
The Miller indices are already given in the statement. Then, the distance is:


Answer:
Heat flux is 20 W/m^2
Explanation:
Heat flux (Q) is computed as
where h is heat transfer coefficient and ΔT is the difference between body's temperature
From the interior air to the inner wall
From the the outer wall to the exterior air
The wall is under steady-state condition because heat flux is constant