1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Galina-37 [17]
3 years ago
12

The boy in the wagon begins throwing bricks out of the wagon to simulate rocket propulsion. The wagon begins at rest, and the bo

y throws three bricks. The boy’s weight is 80lbs, and the weight of the wago 20 lbs. The bricks weigh 10 lbs each, and he throws them with a horizontal velocity of 10 ft/s relative to the wagon. Neglect horizontal forces on the wagon's wheels.
A) What velocity does the boy attain if he throws the bricks one at a time?
B) What velocity does the boy attain if he throws all three bricks at once?
C) Compare the results of parts (a) and (b). What does this suggest about rocket propulsion? Why are these results different?
Engineering
1 answer:
Digiron [165]3 years ago
5 0

Q:What velocity does the boy attain if he throws the bricks one at a time?

Answer:Linear velocity since it moves back and firth and does not rotate like angular velocity.

You might be interested in
How does Hydro Technology and Hydro Energy Help with Global Water Issues?
GrogVix [38]
It would have environmental and societal impacts
5 0
3 years ago
Air at 400kPa, 970 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occu
Sonja [21]

Answer:

a

The rate of work developed is \frac{\r W}{\r m}= 300kJ/kg

b

The rate of entropy produced within the turbine is   \frac{\sigma}{\r m}=  0.0861kJ/kg \cdot K

Explanation:

     From  the question we are told

          The rate at which heat is transferred is \frac{\r Q}{\r m } = -  30KJ/kg

the negative sign because the heat is transferred from the turbine

          The specific heat capacity of air is c_p = 1.1KJ/kg \cdot K

          The inlet temperature is  T_1 = 970K

          The outlet temperature is T_2 = 670K

           The pressure at the inlet of the turbine is p_1 = 400 kPa

          The pressure at the exist of the turbine is p_2 = 100kPa

           The temperature at outer surface is T_s = 315K

         The individual gas constant of air  R with a constant value R = 0.287kJ/kg \cdot K

The general equation for the turbine operating at steady state is \

               \r Q - \r W + \r m (h_1 - h_2) = 0

h is the enthalpy of the turbine and it is mathematically represented as          

        h = c_p T

The above equation becomes

             \r Q - \r W + \r m c_p(T_1 - T_2) = 0

              \frac{\r W}{\r m}  = \frac{\r Q}{\r m} + c_p (T_1 -T_2)

Where \r Q is the heat transfer from the turbine

           \r W is the work output from the turbine

            \r m is the mass flow rate of air

             \frac{\r W}{\r m} is the rate of work developed

Substituting values

              \frac{\r W}{\r m} =  (-30)+1.1(970-670)

                   \frac{\r W}{\r m}= 300kJ/kg

The general balance  equation for an entropy rate is represented mathematically as

                       \frac{\r Q}{T_s} + \r m (s_1 -s_2) + \sigma  = 0

          =>          \frac{\sigma}{\r m} = - \frac{\r Q}{\r m T_s} + (s_1 -s_2)

    generally (s_1 -s_2) = \Delta s = c_p\ ln[\frac{T_2}{T_1} ] + R \ ln[\frac{v_2}{v_1} ]

substituting for (s_1 -s_2)

                      \frac{\sigma}{\r m} = \frac{-\r Q}{\r m} * \frac{1}{T_s} +  c_p\ ln[\frac{T_2}{T_1} ] - R \ ln[\frac{p_2}{p_1} ]

                      Where \frac{\sigma}{\r m} is the rate of entropy produced within the turbine

 substituting values

                \frac{\sigma}{\r m} = - (-30) * \frac{1}{315} + 1.1 * ln\frac{670}{970} - 0.287 * ln [\frac{100kPa}{400kPa} ]

                    \frac{\sigma}{\r m}=  0.0861kJ/kg \cdot K

           

 

                   

   

5 0
4 years ago
In order to keep an automobile operating, it is necessary to keep adding fuel as it is used up. Explain why this doesn't contrad
Semmy [17]

Answer:

There is conversion of energy from one form to another and this justifies the law of conservation of energy, which states that energy can neither be created nor destroyed but can be converted from one form to another.

Explanation:

The fuel added to automobile is a chemical energy, which provides thermal energy of the combustion engine of the automobile, which is then converted to mechanical energy of the moving parts of the automobile. Thus, there is conversion of energy from one form to another. This justifies the law of conservation of energy, which states that energy can neither be created nor destroyed but can be converted from one form to another.

3 0
2 years ago
Consider a half-wave rectifier circuit with a triangular-wave input of LaTeX: 6V6 V peak-to-peak amplitude and zero average valu
Varvara68 [4.7K]

The question is not complete. We are supposed to find the average value of v_o.

Answer:

v_o,avg = 0.441V

Explanation:

Let t1 and t2 be the start and stop times of the output waveforms. Thus, from the diagram i attached, using similar triangles, we have;

3/(T/4) = 0.7/t1

So, 12/T = 0.7/t1

So, t1 = 0.7T/12

t1 = 0.0583 T

Also, from symmetry of triangles,

t2 = T/2 - t1

So, t2 = T/2 - 0.0583 T

t2 = 0.4417T

Average of voltage output is;

v_o,avg = (1/T) x Area under small triangle

v_o,avg = (1/T) x (3 - 0.7) x (T/4 - t1)

v_o,avg = (1/T) x (2.3) x (T/4 - 0.0583 T)

v_o,avg = (1/T) x 2.3 x 0.1917T

T will cancel out to give;

v_o,avg = 0.441V

8 0
3 years ago
Is a water proof material used around tubs and
Leviafan [203]
I think it’s hard board
4 0
3 years ago
Read 2 more answers
Other questions:
  • What is the Principle of Entropy Increase?
    9·1 answer
  • How to go about the designing of a multirange voltmeter​
    8·1 answer
  • Describe, in a general form, the equation, in time domain, that tells the voltage across a inductor, L, as a function of time wh
    6·1 answer
  • A string of ASCII characters has been converted to hexadecimal resulting in the following message: 4A EF 62 73 73 F4 E5 76 E5 Of
    6·1 answer
  • How do you extablish a chain of dimensions​
    15·1 answer
  • Need help please????????!!!!!!
    5·1 answer
  • Andy is a carpenter and wants to make various articles using engineered wood. Which of these wood types can he use?
    8·2 answers
  • ───────────────────────────────
    7·1 answer
  • Define Mechanism and mechanics.​
    15·2 answers
  • What is the purpose of encryption?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!