Answer:
I know it is C)Virtual reality
Explanation:
Look at the clues
story about putting on a headset ( virtual reality head set!)
seeing a digital world (A virtual reality world)
they could walk around in (Fake walking you are basically jogging in place)
explore in order to see what ancient Benin looked like (Looking at a real place only digitally)
as if they were really there ( they think they are actually there)
The only reason I know all of this is because I have done virtual reality multiple times and I LOVED it SUPER fun ( I was doing archery) :) Hope this helps!
Answer:
Sound barrier.
Explanation:
Sound barrier is a sudden increase in drag and other effects when an aircraft travels faster than the speed of sound. Other undesirable effects are experienced in the transonic stage, such as relative air movement creating disruptive shock waves and turbulence. One of the adverse effect of this sound barrier in early plane designs was that at this speed, the weight of the engine required to power the aircraft would be too large for the aircraft to carry. Modern planes have designs that now combat most of these undesirable effects of the sound barrier.
Answer:
The given blanks can be filled as given below
Voltmeter must be connected in parallel
Explanation:
A voltmeter is connected in parallel to measure the voltage drop across a resistor this is because in parallel connection, current is divided in each parallel branch and voltage remains same in parallel connections.
Therefore, in order to measure the same voltage across the voltmeter as that of the voltage drop across resistor, voltmeter must be connected in parallel.
Assumptions:
- Steady state.
- Air as working fluid.
- Ideal gas.
- Reversible process.
- Ideal Otto Cycle.
Explanation:
Otto cycle is a thermodynamic cycle widely used in automobile engines, in which an amount of gas (air) experiences changes of pressure, temperature, volume, addition of heat, and removal of heat. The cycle is composed by (following the P-V diagram):
- Intake <em>0-1</em>: the mass of working fluid is drawn into the piston at a constant pressure.
- Adiabatic compression <em>1-2</em>: the mass of working fluid is compressed isentropically from State 1 to State 2 through compression ratio (r).
![r =\frac{V_1}{V_2}](https://tex.z-dn.net/?f=r%20%3D%5Cfrac%7BV_1%7D%7BV_2%7D)
- Ignition 2-3: the volume remains constant while heat is added to the mass of gas.
- Expansion 3-4: the working fluid does work on the piston due to the high pressure within it, thus the working fluid reaches the maximum volume through the compression ratio.
![r = \frac{V_4}{V_3} = \frac{V_1}{V_2}](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7BV_4%7D%7BV_3%7D%20%3D%20%5Cfrac%7BV_1%7D%7BV_2%7D)
- Heat Rejection 4-1: heat is removed from the working fluid as the pressure drops instantaneously.
- Exhaust 1-0: the working fluid is vented to the atmosphere.
If the system produces enough work, the automobile and its occupants will propel. On the other hand, the efficiency of the Otto Cycle is defined as follows:
![\eta = 1-(\frac{1}{r^{\gamma - 1} } )](https://tex.z-dn.net/?f=%5Ceta%20%3D%201-%28%5Cfrac%7B1%7D%7Br%5E%7B%5Cgamma%20-%201%7D%20%7D%20%29)
where:
![\gamma = \frac{C_{p} }{C_{v}} : specific heat ratio](https://tex.z-dn.net/?f=%5Cgamma%20%3D%20%5Cfrac%7BC_%7Bp%7D%20%7D%7BC_%7Bv%7D%7D%20%3A%20specific%20heat%20ratio)
Ideal air is the working fluid, as stated before, for which its specific heat ratio can be considered constant.
![\gamma = 1.4](https://tex.z-dn.net/?f=%5Cgamma%20%3D%201.4)
Answer:
See image attached.