Answer:
6.3445×10⁻¹⁶ m
Explanation:
E = Accelerating voltage = 2.47×10³ V
m = Mass of electron
Distance electron travels = 33.5 cm = 0.335 cm

Deflection by Earth's Gravity

Now, Time = Distance/Velocity

∴ Magnitude of the deflection on the screen caused by the Earth's gravitational field is 6.3445×10⁻¹⁶ m
<span>The only thing that can change the motion of an object is a net (unbalanced)</span>force acting on it. This is given by Newton's First Law of Motion, sometimes <span>also called the Law of Inertia.
I hope this helps!</span>
Answer:
a) ΔV = 2,118 10⁻⁸ m³ b) ΔR= 0.0143 cm
Explanation:
a) For this part we use the concept of density
ρ = m / V
As we are told that 1 carat is 0.2g we can make a rule of proportions (three) to find the weight of 2.8 carats
m = 2.8 Qt (0.2 g / 1 Qt) = 0.56 g = 0.56 10-3 kg
V = m / ρ
V = 0.56 / 3.52
V = 0.159 cm3
We use the relation of the bulk module
B = P / (Δv/V)
ΔV = V P / B
ΔV = 0.159 10⁻⁶ 58 10⁹ /4.43 10¹¹
ΔV = 2,118 10⁻⁸ m³
b) indicates that we approximate the diamond to a sphere
V = 4/3 π R³
For this part let's look for the initial radius
R₀ = ∛ ¾ V /π
R₀ = ∛ (¾ 0.159 /π)
R₀ = 0.3361 cm
Now we look for the final volume and with this the final radius
= V + ΔV
= 0.159 + 2.118 10⁻²
= 0.18018 cm3
= ∛ (¾ 0.18018 /π)
= 0.3504 cm
The radius increment is
ΔR =
- R₀
ΔR = 0.3504 - 0.3361
ΔR= 0.0143 cm
Answer:
<u>Principal</u><u> </u><u>focus</u><u> </u><u>of</u><u> </u><u>concav</u><u>e</u><u> </u><u>lens</u><u> </u><u>-</u><u> </u>
★ The point at which rays parallel to principal axis coming from infinity appear to converge after being refracted from concave lens is called the principal focus of concave lens.
<em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em>
• <u>Additional</u><u> information</u><u> </u><u>-</u><u> </u>
★ Principal focus - A number of rays parallel to the principal axis after reflection from a concave mirror meet at a point on the principal axis or appear to come from a point after reflection from a convex mirror on the principal axis. This is called principal focus.