Answer:
The correct option is the last option.
Explanation:
Generally, when trying to create a mechanical advantage of a lever for an apparatus or a machine, <u>the load is usually moved closer to the fulcrum</u>. Hence, if a lever has a total length of 12 meters and the fulcrum is placed at 6 meters (the center), the best way (based on the previous statement) to double the mechanical advantage of the lever is <u>to move the fulcrum 4 meters toward the side on which the force is applied</u>. The correct option is the last option.
Answer:
Work is best defined as a force exerted on a body to cause it move over a certain distance.
work=force×displacement×cosθ
Explanation:
Answer:
c.) Their eligibility for social education services depends on whether their conditions adversely affect their educational functioning.
Explanation:
Chronic Illness is a human health condition in which a particular (or number of) illness is persistent in the body and the effects on the body are long-lasting and are often resistant to treatment. The word chronic is usually used when the disease/illness/sickness and its effects stay in the body for more than three months.
The likeliest answer from the options given is option C because before social education services are given, it has to be decided if their health condition adversely affects their education.
By definition, the law of conservation of energy states that:
Ei = Ef
Where,
Ei: initial energy
Ef: final energy
Therefore, no matter the type of energy, always the final energy is equal to the final energy.
Energy can be transformed into another type of energy. For example, the potential energy can be transformed into kinetic energy.
Also, energy is not created, nor destroyed.
Answer:
The following is not true about the Law of Conservation of Energy:
A. It states that the total energy in the universe keeps increasing.
Answer:
a) E = 2.00 10³ J
, b) I = 6.66 10⁻⁶ N s
, c) F = 1.66 10⁻⁶ N
Explanation:
a) The intensity is defined as the power per unit area
I = P / A
P = I A
Power is energy for time
P = E / t
We replace
E / t = I A
E = I A t
E = 1.0 10³ 2.0 1.00
E = 2.00 10³ J
b) The moment is
p = U / c
In the case of a reflection the speed is reversed, so the moment
Δp = 2 U / c
I = Δp
I = 2 U / c
I = 2.00 10³/3 10⁸
I = 6.66 10⁻⁶ N s
c) The defined impulse is
I = F t
F = I / t
For a time of 1 s
F = 6.66 10⁻⁶ / 1
F = 1.66 10⁻⁶ N
d) Suppose n small mass mirror m = 10 10⁻³ kg, we write Newton's second law
F = ma
a = F / m
a = 1.66 10⁻⁶ / 10 10⁻³
a = 1.66 10⁻⁴ m / s
We see that the acceleration is very small and attended to increase the mass of the mirror will be less and less, so the assumption of no twisting of the mirror is very reasonable