Average acceleration over a time interval lasting
is

where
is the difference in the jet's final and initial velocities. It's coming to a rest, so

so the average acceleration has magnitude 8.9 m/s^2 and is pointing West (the direction opposite the jet's movement, which should make sense because the jet is slowing down).
Answer:
I hope 2 amperes of current passes
<span>b) The force with a distance of 150 km is 889 N
c) The force with a distance of 50 km is 8000 N
This question looks like a mixture of a question and a critique of a previous answer. I'll attempt to address the original question.
Since the radius of the spherical objects isn't mentioned anywhere, I will assume that the distance from the center of each spherical object is what's being given. The gravitational force between two masses is given as
F = (G M1 M2)/r^2
where
F = Force
G = gravitational constant
M1 = Mass 1
M2 = Mass 2
r = distance between center of masses for the two masses.
So with a r value of 100 km, we have a force of 2000 Newtons. If we change the distance to 150 km, that increases the distance by a factor of 1.5 and since the force varies with the inverse square, we get the original force divided by 2.25. And 2000 / 2.25 = 888.88888.... when rounded to 3 digits gives us 889.
Looking at what looks like an answer of 890 in the question is explainable as someone rounding incorrectly to 2 significant digits.
If the distance is changed to 50 km from the original 100 km, then you have half the distance (50/100 = 0.5) and the squaring will give you a new divisor of 0.25, and 2000 / 0.25 = 8000. So the force increases to 8000 Newtons.</span>
The appropriate answer is c. geysers. A geysers a hot water fountain that spouts intermittently with great force, frequently accompanied by a thunderous roar. The world famous Old Faithful is located in Yellowstone National Park. This geyser erupts every 65 min sending a jet of water almost 60 meters into the air. Sinkholes and caves are formed by the action of groundwater on carbonate rocks which causes them to colapse and former these structures.
Answer:
277.78 hours
Explanation:
The formula for calculating the amount of charge is expressed as;
Q = It
I is the current
t is the time
Given
I =0.05A
Q = 50,000C
Required
Time t
Recall that: Q = It
t = Q/I
t = 50,000/0.05
t = 1,000,000secs
Convert to hours
1,000,000secs = 1,000,000/3600
1,000,000secs = 277.78 hours
Hence it will take 277.78 hours for the charge to flow through the diode