<span>The graph is attached.
Explanation:We can use the x- and y-intercepts to graph. The x-intercept of the first equation is 8, and the y-intercept is 8. The x-intercept of the second equation is -2, and the y-intercept is 2.
<span>
x-intercepts are where the data crosses the x-axis. At every one of these points, the y-coordinate will be 0; therefore we can substitute 0 for y and solve to get the value of the x-intercept.
For the first equation, we would have
8x+8(0)=64
8x=64.
Divide both sides by 8:
8x/8 = 64/8
x=8.
For the second equation,
2x-2(0)=-4
2x=-4.
Divide both sides by 2:
2x/2 = -4/2
x=-2.
y-intercepts are where the data crosses the y-axis. At every one of these points, the x-coordinate will be 0; therefore we can substitute 0 for x and solve to get the value of the y-intercept.
For the first equation,
8(0)+8y=64
8y=64.
Divide both sides by 8:
8y/8 = 64/8
y=8.
For the second equation,
2(0)-2y=-4
-2y=-4.
Divide both sides by -2:
-2y/-2 = -4/-2
y=2.
Plot these points for both equations and connect them to draw the line.</span></span>
Area of a circumference=π*r²for diameter=21.2 cm---------> r=10.6 cmA=π*10.6²--------> A=π*112.36 -------> A=352.81 cm²if 2π radians (full circumference) has an area of -----------------> 352.81 cm² 3π/5 radians-------------------------------------> XX=[(3π/5)*(352.81)]/2π---------> X=105.84 cm²
"The sum of two numbers is 20" can be translated mathematically into the equation:
x + y = 20.
"... and their difference is 10" can be translated mathematically as:
x - y = 10
We can now find the two unknown numbers, x and y, because we now have a system of two equations in two unknowns, x and y. We'll use the Addition-Subtraction Method, also know as the Elimination Method, to solve this system of equations for x and y by first eliminating one of the variables, y, by adding the second equation to the first equation to get a third equation in just one unknown, x, as follows:
Adding the two equations will eliminate the variable y:
x + y = 20
x - y = 10
-----------
2x + 0 = 30
2x = 30
(2x)/2 = 30/2
(2/2)x = 15
(1)x = 15
x = 15
Now, substitute x = 15 back into one of the two original equations. Let's use the equation showing the sum of x and y as follows (Note: We could have used the other equation instead):
x + y = 20
15 + y = 20
15 - 15 + y = 20 - 15
0 + y = 5
y = 5
CHECK:
In order for x = 15 and y = 5 to be the solution to our original system of two linear equations in two unknowns, x and y, this pair of numbers must satisfy BOTH equations as follows:
x + y = 20 x - y = 10
15 + 5 = 20 15 - 5 = 10
20 = 20 10 = 10
Therefore, x = 15 and y = 5 is indeed the solution to our original system of two linear equations in two unknowns, x and y, and the product of the two numbers x = 15 and y = 5 is:
xy = 15(5)
xy = 75
Hope it's 30. .....................
Answer: 2/7
Step-by-step explanation: