Answer:
0.011 m.
Explanation:
Energy stored in the spring = Energy of the projectile.
1/2ke² = mgh ................ Equation 1
Where k = spring constant, e = extension or compression, m = mass of the projectile, g = acceleration due to gravity, h = height.
make e the subject of the equation
e = √(2mgh/k)............................. Equation 2
Given: k = 12 N/cm = 1200 N/m, m = 15 g = 0.015 kg, h = 5.0 m
Constant: g = 9.8 m/s²
Substitute into equation 2
e = √(2×0.015×5/1200)
e = √(0.15/1200)
e = √(0.000125)
e = 0.011 m.
Answer:
<em>B</em><em>.</em><em> </em><em>Kinetic</em><em> </em><em>friction</em><em> </em>
Explanation:
This is definitely the correct answer because kinetic friction acts when an object is in motion and it allows the object to move without slipping, etc
<em>ALSO</em><em>,</em><em> </em><em>PLEASE DO</em><em> </em><em>MARK</em><em> </em><em>ME AS</em><em> </em><em>BRAINLIEST UWU</em><em> </em>
<em>Bonne</em><em> </em><em>journée</em><em> </em><em>;</em><em>)</em><em> </em>
Answer: D
Explanation: D is the most reasonable answer because it's always good to plan ahead for anything, so if you were to plan ahead for future obstacles, then you can overcome them.
I think unbalanced forces is one of the reasons
The electric potential between the two charges is 91.68 V.
<h3>
Electric potential between the two charges</h3>
The electric potential between the two charges is calculated as follows;
V = Ed
where;
- V is electric potential
- E is electric field
- d is the distance of the charge
Substitute the given parameters and solve for electric potential,
V = 573 N/c x 0.16 m
V = 91.68 V
Thus, the electric potential between the two charges is 91.68 V.
Learn more about electric potential here: brainly.com/question/26978411
#SPJ4